File size: 1,171 Bytes
598f7ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from src.kr_api.models.ai_request import Request
import torch
from fastapi import APIRouter
from transformers import BertForSequenceClassification, BertTokenizer

model_name = "src/kr_api/kalium_recommend"
model = BertForSequenceClassification.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)


router = APIRouter()
@router.post("/ai")
async def ai(request: Request):
    text = (
        f"This ads is focused in: {request.audience}"
        f"This category is: {request.category} "
        f"This area is: {request.area}"
        f"This sub area of ads: {request.sub_area}"
    )

    inputs = tokenizer.encode_plus(
        text,
        add_special_tokens=True,
        return_tensors="pt",
        padding='max_length',
        truncation=True,
        max_length=255
    )
    input_ids = inputs['input_ids'].to(device)
    attention_mask = inputs['attention_mask'].to(device)

    with torch.no_grad():
        outputs = model(input_ids, attention_mask=attention_mask)
        logits = outputs.logits

    return {"similarity": logits.tolist()}