Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torchaudio
|
| 3 |
+
from datasets import load_dataset, load_metric
|
| 4 |
+
from transformers import (
|
| 5 |
+
Wav2Vec2ForCTC,
|
| 6 |
+
Wav2Vec2Processor,
|
| 7 |
+
AutoTokenizer,
|
| 8 |
+
AutoModelWithLMHead
|
| 9 |
+
)
|
| 10 |
+
import torch
|
| 11 |
+
import re
|
| 12 |
+
import sys
|
| 13 |
+
import soundfile as sf
|
| 14 |
+
from utils import SpeechRecognition
|
| 15 |
+
sp = SpeechRecognition()
|
| 16 |
+
sp.load_model()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
model_name = "voidful/wav2vec2-xlsr-multilingual-56"
|
| 21 |
+
device = "cuda"
|
| 22 |
+
processor_name = "voidful/wav2vec2-xlsr-multilingual-56"
|
| 23 |
+
|
| 24 |
+
import pickle
|
| 25 |
+
with open("lang_ids.pk", 'rb') as output:
|
| 26 |
+
lang_ids = pickle.load(output)
|
| 27 |
+
|
| 28 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
|
| 29 |
+
processor = Wav2Vec2Processor.from_pretrained(processor_name)
|
| 30 |
+
|
| 31 |
+
model.eval()
|
| 32 |
+
|
| 33 |
+
def load_file_to_data(file,sampling_rate=16_000):
|
| 34 |
+
batch = {}
|
| 35 |
+
speech, _ = torchaudio.load(file)
|
| 36 |
+
if sampling_rate != '16_000' or sampling_rate != '16000':
|
| 37 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16_000)
|
| 38 |
+
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
|
| 39 |
+
batch["sampling_rate"] = resampler.new_freq
|
| 40 |
+
else:
|
| 41 |
+
batch["speech"] = speech.squeeze(0).numpy()
|
| 42 |
+
batch["sampling_rate"] = '16000'
|
| 43 |
+
return batch
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def predict(data):
|
| 47 |
+
data=load_file_to_data(data,sampling_rate='16_000')
|
| 48 |
+
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
|
| 49 |
+
input_values = features.input_values.to(device)
|
| 50 |
+
attention_mask = features.attention_mask.to(device)
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
| 53 |
+
decoded_results = []
|
| 54 |
+
for logit in logits:
|
| 55 |
+
pred_ids = torch.argmax(logit, dim=-1)
|
| 56 |
+
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size())
|
| 57 |
+
vocab_size = logit.size()[-1]
|
| 58 |
+
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
|
| 59 |
+
comb_pred_ids = torch.argmax(voice_prob, dim=-1)
|
| 60 |
+
decoded_results.append(processor.decode(comb_pred_ids))
|
| 61 |
+
|
| 62 |
+
return decoded_results
|
| 63 |
+
|
| 64 |
+
def predict_lang_specific(data,lang_code):
|
| 65 |
+
data=load_file_to_data(data,sampling_rate='16_000')
|
| 66 |
+
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
|
| 67 |
+
input_values = features.input_values.to(device)
|
| 68 |
+
attention_mask = features.attention_mask.to(device)
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
| 71 |
+
decoded_results = []
|
| 72 |
+
for logit in logits:
|
| 73 |
+
pred_ids = torch.argmax(logit, dim=-1)
|
| 74 |
+
mask = ~pred_ids.eq(processor.tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size())
|
| 75 |
+
vocab_size = logit.size()[-1]
|
| 76 |
+
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
|
| 77 |
+
filtered_input = pred_ids[pred_ids!=processor.tokenizer.pad_token_id].view(1,-1).to(device)
|
| 78 |
+
if len(filtered_input[0]) == 0:
|
| 79 |
+
decoded_results.append("")
|
| 80 |
+
else:
|
| 81 |
+
lang_mask = torch.empty(voice_prob.shape[-1]).fill_(0)
|
| 82 |
+
lang_index = torch.tensor(sorted(lang_ids[lang_code]))
|
| 83 |
+
lang_mask.index_fill_(0, lang_index, 1)
|
| 84 |
+
lang_mask = lang_mask.to(device)
|
| 85 |
+
comb_pred_ids = torch.argmax(lang_mask*voice_prob, dim=-1)
|
| 86 |
+
decoded_results.append(processor.decode(comb_pred_ids))
|
| 87 |
+
|
| 88 |
+
return decoded_results
|
| 89 |
+
|
| 90 |
+
def recognition(audio_file):
|
| 91 |
+
print("audio_file", audio_file.name)
|
| 92 |
+
speech, rate = sp.load_speech_with_file(audio_file.name)
|
| 93 |
+
|
| 94 |
+
result = sp.predict_audio_file(speech)
|
| 95 |
+
print(result)
|
| 96 |
+
|
| 97 |
+
return result
|
| 98 |
+
|
| 99 |
+
#predict(load_file_to_data('audio file path',sampling_rate=16_000)) # beware of the audio file sampling rate
|
| 100 |
+
|
| 101 |
+
#predict_lang_specific(load_file_to_data('audio file path',sampling_rate=16_000),'en') # beware of the audio file sampling rate
|
| 102 |
+
with gr.Blocks() as demo:
|
| 103 |
+
gr.Markdown("multilingual Speech Recognition")
|
| 104 |
+
with gr.Tab("Auto"):
|
| 105 |
+
gr.Markdown("automatically detects your language")
|
| 106 |
+
inputs_speech =gr.Audio(source="upload", type="filepath", optional=True)
|
| 107 |
+
output_transcribe = gr.HTML(label="")
|
| 108 |
+
transcribe_audio= gr.Button("Submit")
|
| 109 |
+
with gr.Tab("manual"):
|
| 110 |
+
gr.Markdown("set your speech language")
|
| 111 |
+
inputs_speech1 =[
|
| 112 |
+
gr.Audio(source="upload", type="filepath"),
|
| 113 |
+
gr.Dropdown(choices=["ar","as","br","ca","cnh","cs","cv","cy","de","dv","el","en","eo","es","et","eu","fa","fi","fr","fy-NL","ga-IE","hi","hsb","hu","ia","id","it","ja","ka","ky","lg","lt","lv","mn","mt","nl","or","pa-IN","pl","pt","rm-sursilv","rm-vallader","ro","ru","sah","sl","sv-SE","ta","th","tr","tt","uk","vi","zh-CN","zh-HK","zh-TW"]
|
| 114 |
+
,value="fa",label="language code")
|
| 115 |
+
]
|
| 116 |
+
output_transcribe1 = gr.Textbox(label="output")
|
| 117 |
+
transcribe_audio1= gr.Button("Submit")
|
| 118 |
+
with gr.Tab("Auto1"):
|
| 119 |
+
gr.Markdown("automatically detects your language")
|
| 120 |
+
inputs_speech2 = gr.Audio(label="Input Audio", type="file")
|
| 121 |
+
output_transcribe2 = gr.Textbox()
|
| 122 |
+
transcribe_audio2= gr.Button("Submit")
|
| 123 |
+
transcribe_audio.click(fn=predict,
|
| 124 |
+
inputs=inputs_speech,
|
| 125 |
+
outputs=output_transcribe)
|
| 126 |
+
|
| 127 |
+
transcribe_audio1.click(fn=predict_lang_specific,
|
| 128 |
+
inputs=inputs_speech1 ,
|
| 129 |
+
outputs=output_transcribe1 )
|
| 130 |
+
|
| 131 |
+
transcribe_audio2.click(fn=recognition,
|
| 132 |
+
inputs=inputs_speech2 ,
|
| 133 |
+
outputs=output_transcribe2 )
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
demo.launch(share=True)
|