Spaces:
Paused
Paused
| """ | |
| Set operations for arrays based on sorting. | |
| Notes | |
| ----- | |
| For floating point arrays, inaccurate results may appear due to usual round-off | |
| and floating point comparison issues. | |
| Speed could be gained in some operations by an implementation of | |
| `numpy.sort`, that can provide directly the permutation vectors, thus avoiding | |
| calls to `numpy.argsort`. | |
| Original author: Robert Cimrman | |
| """ | |
| import functools | |
| import numpy as np | |
| from numpy.core import overrides | |
| array_function_dispatch = functools.partial( | |
| overrides.array_function_dispatch, module='numpy') | |
| __all__ = [ | |
| 'ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d', 'unique', | |
| 'in1d', 'isin' | |
| ] | |
| def _ediff1d_dispatcher(ary, to_end=None, to_begin=None): | |
| return (ary, to_end, to_begin) | |
| def ediff1d(ary, to_end=None, to_begin=None): | |
| """ | |
| The differences between consecutive elements of an array. | |
| Parameters | |
| ---------- | |
| ary : array_like | |
| If necessary, will be flattened before the differences are taken. | |
| to_end : array_like, optional | |
| Number(s) to append at the end of the returned differences. | |
| to_begin : array_like, optional | |
| Number(s) to prepend at the beginning of the returned differences. | |
| Returns | |
| ------- | |
| ediff1d : ndarray | |
| The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``. | |
| See Also | |
| -------- | |
| diff, gradient | |
| Notes | |
| ----- | |
| When applied to masked arrays, this function drops the mask information | |
| if the `to_begin` and/or `to_end` parameters are used. | |
| Examples | |
| -------- | |
| >>> x = np.array([1, 2, 4, 7, 0]) | |
| >>> np.ediff1d(x) | |
| array([ 1, 2, 3, -7]) | |
| >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) | |
| array([-99, 1, 2, ..., -7, 88, 99]) | |
| The returned array is always 1D. | |
| >>> y = [[1, 2, 4], [1, 6, 24]] | |
| >>> np.ediff1d(y) | |
| array([ 1, 2, -3, 5, 18]) | |
| """ | |
| # force a 1d array | |
| ary = np.asanyarray(ary).ravel() | |
| # enforce that the dtype of `ary` is used for the output | |
| dtype_req = ary.dtype | |
| # fast track default case | |
| if to_begin is None and to_end is None: | |
| return ary[1:] - ary[:-1] | |
| if to_begin is None: | |
| l_begin = 0 | |
| else: | |
| to_begin = np.asanyarray(to_begin) | |
| if not np.can_cast(to_begin, dtype_req, casting="same_kind"): | |
| raise TypeError("dtype of `to_begin` must be compatible " | |
| "with input `ary` under the `same_kind` rule.") | |
| to_begin = to_begin.ravel() | |
| l_begin = len(to_begin) | |
| if to_end is None: | |
| l_end = 0 | |
| else: | |
| to_end = np.asanyarray(to_end) | |
| if not np.can_cast(to_end, dtype_req, casting="same_kind"): | |
| raise TypeError("dtype of `to_end` must be compatible " | |
| "with input `ary` under the `same_kind` rule.") | |
| to_end = to_end.ravel() | |
| l_end = len(to_end) | |
| # do the calculation in place and copy to_begin and to_end | |
| l_diff = max(len(ary) - 1, 0) | |
| result = np.empty(l_diff + l_begin + l_end, dtype=ary.dtype) | |
| result = ary.__array_wrap__(result) | |
| if l_begin > 0: | |
| result[:l_begin] = to_begin | |
| if l_end > 0: | |
| result[l_begin + l_diff:] = to_end | |
| np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff]) | |
| return result | |
| def _unpack_tuple(x): | |
| """ Unpacks one-element tuples for use as return values """ | |
| if len(x) == 1: | |
| return x[0] | |
| else: | |
| return x | |
| def _unique_dispatcher(ar, return_index=None, return_inverse=None, | |
| return_counts=None, axis=None): | |
| return (ar,) | |
| def unique(ar, return_index=False, return_inverse=False, | |
| return_counts=False, axis=None): | |
| """ | |
| Find the unique elements of an array. | |
| Returns the sorted unique elements of an array. There are three optional | |
| outputs in addition to the unique elements: | |
| * the indices of the input array that give the unique values | |
| * the indices of the unique array that reconstruct the input array | |
| * the number of times each unique value comes up in the input array | |
| Parameters | |
| ---------- | |
| ar : array_like | |
| Input array. Unless `axis` is specified, this will be flattened if it | |
| is not already 1-D. | |
| return_index : bool, optional | |
| If True, also return the indices of `ar` (along the specified axis, | |
| if provided, or in the flattened array) that result in the unique array. | |
| return_inverse : bool, optional | |
| If True, also return the indices of the unique array (for the specified | |
| axis, if provided) that can be used to reconstruct `ar`. | |
| return_counts : bool, optional | |
| If True, also return the number of times each unique item appears | |
| in `ar`. | |
| .. versionadded:: 1.9.0 | |
| axis : int or None, optional | |
| The axis to operate on. If None, `ar` will be flattened. If an integer, | |
| the subarrays indexed by the given axis will be flattened and treated | |
| as the elements of a 1-D array with the dimension of the given axis, | |
| see the notes for more details. Object arrays or structured arrays | |
| that contain objects are not supported if the `axis` kwarg is used. The | |
| default is None. | |
| .. versionadded:: 1.13.0 | |
| Returns | |
| ------- | |
| unique : ndarray | |
| The sorted unique values. | |
| unique_indices : ndarray, optional | |
| The indices of the first occurrences of the unique values in the | |
| original array. Only provided if `return_index` is True. | |
| unique_inverse : ndarray, optional | |
| The indices to reconstruct the original array from the | |
| unique array. Only provided if `return_inverse` is True. | |
| unique_counts : ndarray, optional | |
| The number of times each of the unique values comes up in the | |
| original array. Only provided if `return_counts` is True. | |
| .. versionadded:: 1.9.0 | |
| See Also | |
| -------- | |
| numpy.lib.arraysetops : Module with a number of other functions for | |
| performing set operations on arrays. | |
| repeat : Repeat elements of an array. | |
| Notes | |
| ----- | |
| When an axis is specified the subarrays indexed by the axis are sorted. | |
| This is done by making the specified axis the first dimension of the array | |
| (move the axis to the first dimension to keep the order of the other axes) | |
| and then flattening the subarrays in C order. The flattened subarrays are | |
| then viewed as a structured type with each element given a label, with the | |
| effect that we end up with a 1-D array of structured types that can be | |
| treated in the same way as any other 1-D array. The result is that the | |
| flattened subarrays are sorted in lexicographic order starting with the | |
| first element. | |
| .. versionchanged: NumPy 1.21 | |
| If nan values are in the input array, a single nan is put | |
| to the end of the sorted unique values. | |
| Also for complex arrays all NaN values are considered equivalent | |
| (no matter whether the NaN is in the real or imaginary part). | |
| As the representant for the returned array the smallest one in the | |
| lexicographical order is chosen - see np.sort for how the lexicographical | |
| order is defined for complex arrays. | |
| Examples | |
| -------- | |
| >>> np.unique([1, 1, 2, 2, 3, 3]) | |
| array([1, 2, 3]) | |
| >>> a = np.array([[1, 1], [2, 3]]) | |
| >>> np.unique(a) | |
| array([1, 2, 3]) | |
| Return the unique rows of a 2D array | |
| >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) | |
| >>> np.unique(a, axis=0) | |
| array([[1, 0, 0], [2, 3, 4]]) | |
| Return the indices of the original array that give the unique values: | |
| >>> a = np.array(['a', 'b', 'b', 'c', 'a']) | |
| >>> u, indices = np.unique(a, return_index=True) | |
| >>> u | |
| array(['a', 'b', 'c'], dtype='<U1') | |
| >>> indices | |
| array([0, 1, 3]) | |
| >>> a[indices] | |
| array(['a', 'b', 'c'], dtype='<U1') | |
| Reconstruct the input array from the unique values and inverse: | |
| >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) | |
| >>> u, indices = np.unique(a, return_inverse=True) | |
| >>> u | |
| array([1, 2, 3, 4, 6]) | |
| >>> indices | |
| array([0, 1, 4, 3, 1, 2, 1]) | |
| >>> u[indices] | |
| array([1, 2, 6, 4, 2, 3, 2]) | |
| Reconstruct the input values from the unique values and counts: | |
| >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) | |
| >>> values, counts = np.unique(a, return_counts=True) | |
| >>> values | |
| array([1, 2, 3, 4, 6]) | |
| >>> counts | |
| array([1, 3, 1, 1, 1]) | |
| >>> np.repeat(values, counts) | |
| array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved | |
| """ | |
| ar = np.asanyarray(ar) | |
| if axis is None: | |
| ret = _unique1d(ar, return_index, return_inverse, return_counts) | |
| return _unpack_tuple(ret) | |
| # axis was specified and not None | |
| try: | |
| ar = np.moveaxis(ar, axis, 0) | |
| except np.AxisError: | |
| # this removes the "axis1" or "axis2" prefix from the error message | |
| raise np.AxisError(axis, ar.ndim) from None | |
| # Must reshape to a contiguous 2D array for this to work... | |
| orig_shape, orig_dtype = ar.shape, ar.dtype | |
| ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp)) | |
| ar = np.ascontiguousarray(ar) | |
| dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])] | |
| # At this point, `ar` has shape `(n, m)`, and `dtype` is a structured | |
| # data type with `m` fields where each field has the data type of `ar`. | |
| # In the following, we create the array `consolidated`, which has | |
| # shape `(n,)` with data type `dtype`. | |
| try: | |
| if ar.shape[1] > 0: | |
| consolidated = ar.view(dtype) | |
| else: | |
| # If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is | |
| # a data type with itemsize 0, and the call `ar.view(dtype)` will | |
| # fail. Instead, we'll use `np.empty` to explicitly create the | |
| # array with shape `(len(ar),)`. Because `dtype` in this case has | |
| # itemsize 0, the total size of the result is still 0 bytes. | |
| consolidated = np.empty(len(ar), dtype=dtype) | |
| except TypeError as e: | |
| # There's no good way to do this for object arrays, etc... | |
| msg = 'The axis argument to unique is not supported for dtype {dt}' | |
| raise TypeError(msg.format(dt=ar.dtype)) from e | |
| def reshape_uniq(uniq): | |
| n = len(uniq) | |
| uniq = uniq.view(orig_dtype) | |
| uniq = uniq.reshape(n, *orig_shape[1:]) | |
| uniq = np.moveaxis(uniq, 0, axis) | |
| return uniq | |
| output = _unique1d(consolidated, return_index, | |
| return_inverse, return_counts) | |
| output = (reshape_uniq(output[0]),) + output[1:] | |
| return _unpack_tuple(output) | |
| def _unique1d(ar, return_index=False, return_inverse=False, | |
| return_counts=False): | |
| """ | |
| Find the unique elements of an array, ignoring shape. | |
| """ | |
| ar = np.asanyarray(ar).flatten() | |
| optional_indices = return_index or return_inverse | |
| if optional_indices: | |
| perm = ar.argsort(kind='mergesort' if return_index else 'quicksort') | |
| aux = ar[perm] | |
| else: | |
| ar.sort() | |
| aux = ar | |
| mask = np.empty(aux.shape, dtype=np.bool_) | |
| mask[:1] = True | |
| if aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and np.isnan(aux[-1]): | |
| if aux.dtype.kind == "c": # for complex all NaNs are considered equivalent | |
| aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left') | |
| else: | |
| aux_firstnan = np.searchsorted(aux, aux[-1], side='left') | |
| if aux_firstnan > 0: | |
| mask[1:aux_firstnan] = ( | |
| aux[1:aux_firstnan] != aux[:aux_firstnan - 1]) | |
| mask[aux_firstnan] = True | |
| mask[aux_firstnan + 1:] = False | |
| else: | |
| mask[1:] = aux[1:] != aux[:-1] | |
| ret = (aux[mask],) | |
| if return_index: | |
| ret += (perm[mask],) | |
| if return_inverse: | |
| imask = np.cumsum(mask) - 1 | |
| inv_idx = np.empty(mask.shape, dtype=np.intp) | |
| inv_idx[perm] = imask | |
| ret += (inv_idx,) | |
| if return_counts: | |
| idx = np.concatenate(np.nonzero(mask) + ([mask.size],)) | |
| ret += (np.diff(idx),) | |
| return ret | |
| def _intersect1d_dispatcher( | |
| ar1, ar2, assume_unique=None, return_indices=None): | |
| return (ar1, ar2) | |
| def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): | |
| """ | |
| Find the intersection of two arrays. | |
| Return the sorted, unique values that are in both of the input arrays. | |
| Parameters | |
| ---------- | |
| ar1, ar2 : array_like | |
| Input arrays. Will be flattened if not already 1D. | |
| assume_unique : bool | |
| If True, the input arrays are both assumed to be unique, which | |
| can speed up the calculation. If True but ``ar1`` or ``ar2`` are not | |
| unique, incorrect results and out-of-bounds indices could result. | |
| Default is False. | |
| return_indices : bool | |
| If True, the indices which correspond to the intersection of the two | |
| arrays are returned. The first instance of a value is used if there are | |
| multiple. Default is False. | |
| .. versionadded:: 1.15.0 | |
| Returns | |
| ------- | |
| intersect1d : ndarray | |
| Sorted 1D array of common and unique elements. | |
| comm1 : ndarray | |
| The indices of the first occurrences of the common values in `ar1`. | |
| Only provided if `return_indices` is True. | |
| comm2 : ndarray | |
| The indices of the first occurrences of the common values in `ar2`. | |
| Only provided if `return_indices` is True. | |
| See Also | |
| -------- | |
| numpy.lib.arraysetops : Module with a number of other functions for | |
| performing set operations on arrays. | |
| Examples | |
| -------- | |
| >>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1]) | |
| array([1, 3]) | |
| To intersect more than two arrays, use functools.reduce: | |
| >>> from functools import reduce | |
| >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) | |
| array([3]) | |
| To return the indices of the values common to the input arrays | |
| along with the intersected values: | |
| >>> x = np.array([1, 1, 2, 3, 4]) | |
| >>> y = np.array([2, 1, 4, 6]) | |
| >>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True) | |
| >>> x_ind, y_ind | |
| (array([0, 2, 4]), array([1, 0, 2])) | |
| >>> xy, x[x_ind], y[y_ind] | |
| (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4])) | |
| """ | |
| ar1 = np.asanyarray(ar1) | |
| ar2 = np.asanyarray(ar2) | |
| if not assume_unique: | |
| if return_indices: | |
| ar1, ind1 = unique(ar1, return_index=True) | |
| ar2, ind2 = unique(ar2, return_index=True) | |
| else: | |
| ar1 = unique(ar1) | |
| ar2 = unique(ar2) | |
| else: | |
| ar1 = ar1.ravel() | |
| ar2 = ar2.ravel() | |
| aux = np.concatenate((ar1, ar2)) | |
| if return_indices: | |
| aux_sort_indices = np.argsort(aux, kind='mergesort') | |
| aux = aux[aux_sort_indices] | |
| else: | |
| aux.sort() | |
| mask = aux[1:] == aux[:-1] | |
| int1d = aux[:-1][mask] | |
| if return_indices: | |
| ar1_indices = aux_sort_indices[:-1][mask] | |
| ar2_indices = aux_sort_indices[1:][mask] - ar1.size | |
| if not assume_unique: | |
| ar1_indices = ind1[ar1_indices] | |
| ar2_indices = ind2[ar2_indices] | |
| return int1d, ar1_indices, ar2_indices | |
| else: | |
| return int1d | |
| def _setxor1d_dispatcher(ar1, ar2, assume_unique=None): | |
| return (ar1, ar2) | |
| def setxor1d(ar1, ar2, assume_unique=False): | |
| """ | |
| Find the set exclusive-or of two arrays. | |
| Return the sorted, unique values that are in only one (not both) of the | |
| input arrays. | |
| Parameters | |
| ---------- | |
| ar1, ar2 : array_like | |
| Input arrays. | |
| assume_unique : bool | |
| If True, the input arrays are both assumed to be unique, which | |
| can speed up the calculation. Default is False. | |
| Returns | |
| ------- | |
| setxor1d : ndarray | |
| Sorted 1D array of unique values that are in only one of the input | |
| arrays. | |
| Examples | |
| -------- | |
| >>> a = np.array([1, 2, 3, 2, 4]) | |
| >>> b = np.array([2, 3, 5, 7, 5]) | |
| >>> np.setxor1d(a,b) | |
| array([1, 4, 5, 7]) | |
| """ | |
| if not assume_unique: | |
| ar1 = unique(ar1) | |
| ar2 = unique(ar2) | |
| aux = np.concatenate((ar1, ar2)) | |
| if aux.size == 0: | |
| return aux | |
| aux.sort() | |
| flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) | |
| return aux[flag[1:] & flag[:-1]] | |
| def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None): | |
| return (ar1, ar2) | |
| def in1d(ar1, ar2, assume_unique=False, invert=False): | |
| """ | |
| Test whether each element of a 1-D array is also present in a second array. | |
| Returns a boolean array the same length as `ar1` that is True | |
| where an element of `ar1` is in `ar2` and False otherwise. | |
| We recommend using :func:`isin` instead of `in1d` for new code. | |
| Parameters | |
| ---------- | |
| ar1 : (M,) array_like | |
| Input array. | |
| ar2 : array_like | |
| The values against which to test each value of `ar1`. | |
| assume_unique : bool, optional | |
| If True, the input arrays are both assumed to be unique, which | |
| can speed up the calculation. Default is False. | |
| invert : bool, optional | |
| If True, the values in the returned array are inverted (that is, | |
| False where an element of `ar1` is in `ar2` and True otherwise). | |
| Default is False. ``np.in1d(a, b, invert=True)`` is equivalent | |
| to (but is faster than) ``np.invert(in1d(a, b))``. | |
| .. versionadded:: 1.8.0 | |
| Returns | |
| ------- | |
| in1d : (M,) ndarray, bool | |
| The values `ar1[in1d]` are in `ar2`. | |
| See Also | |
| -------- | |
| isin : Version of this function that preserves the | |
| shape of ar1. | |
| numpy.lib.arraysetops : Module with a number of other functions for | |
| performing set operations on arrays. | |
| Notes | |
| ----- | |
| `in1d` can be considered as an element-wise function version of the | |
| python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly | |
| equivalent to ``np.array([item in b for item in a])``. | |
| However, this idea fails if `ar2` is a set, or similar (non-sequence) | |
| container: As ``ar2`` is converted to an array, in those cases | |
| ``asarray(ar2)`` is an object array rather than the expected array of | |
| contained values. | |
| .. versionadded:: 1.4.0 | |
| Examples | |
| -------- | |
| >>> test = np.array([0, 1, 2, 5, 0]) | |
| >>> states = [0, 2] | |
| >>> mask = np.in1d(test, states) | |
| >>> mask | |
| array([ True, False, True, False, True]) | |
| >>> test[mask] | |
| array([0, 2, 0]) | |
| >>> mask = np.in1d(test, states, invert=True) | |
| >>> mask | |
| array([False, True, False, True, False]) | |
| >>> test[mask] | |
| array([1, 5]) | |
| """ | |
| # Ravel both arrays, behavior for the first array could be different | |
| ar1 = np.asarray(ar1).ravel() | |
| ar2 = np.asarray(ar2).ravel() | |
| # Ensure that iteration through object arrays yields size-1 arrays | |
| if ar2.dtype == object: | |
| ar2 = ar2.reshape(-1, 1) | |
| # Check if one of the arrays may contain arbitrary objects | |
| contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject | |
| # This code is run when | |
| # a) the first condition is true, making the code significantly faster | |
| # b) the second condition is true (i.e. `ar1` or `ar2` may contain | |
| # arbitrary objects), since then sorting is not guaranteed to work | |
| if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object: | |
| if invert: | |
| mask = np.ones(len(ar1), dtype=bool) | |
| for a in ar2: | |
| mask &= (ar1 != a) | |
| else: | |
| mask = np.zeros(len(ar1), dtype=bool) | |
| for a in ar2: | |
| mask |= (ar1 == a) | |
| return mask | |
| # Otherwise use sorting | |
| if not assume_unique: | |
| ar1, rev_idx = np.unique(ar1, return_inverse=True) | |
| ar2 = np.unique(ar2) | |
| ar = np.concatenate((ar1, ar2)) | |
| # We need this to be a stable sort, so always use 'mergesort' | |
| # here. The values from the first array should always come before | |
| # the values from the second array. | |
| order = ar.argsort(kind='mergesort') | |
| sar = ar[order] | |
| if invert: | |
| bool_ar = (sar[1:] != sar[:-1]) | |
| else: | |
| bool_ar = (sar[1:] == sar[:-1]) | |
| flag = np.concatenate((bool_ar, [invert])) | |
| ret = np.empty(ar.shape, dtype=bool) | |
| ret[order] = flag | |
| if assume_unique: | |
| return ret[:len(ar1)] | |
| else: | |
| return ret[rev_idx] | |
| def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None): | |
| return (element, test_elements) | |
| def isin(element, test_elements, assume_unique=False, invert=False): | |
| """ | |
| Calculates `element in test_elements`, broadcasting over `element` only. | |
| Returns a boolean array of the same shape as `element` that is True | |
| where an element of `element` is in `test_elements` and False otherwise. | |
| Parameters | |
| ---------- | |
| element : array_like | |
| Input array. | |
| test_elements : array_like | |
| The values against which to test each value of `element`. | |
| This argument is flattened if it is an array or array_like. | |
| See notes for behavior with non-array-like parameters. | |
| assume_unique : bool, optional | |
| If True, the input arrays are both assumed to be unique, which | |
| can speed up the calculation. Default is False. | |
| invert : bool, optional | |
| If True, the values in the returned array are inverted, as if | |
| calculating `element not in test_elements`. Default is False. | |
| ``np.isin(a, b, invert=True)`` is equivalent to (but faster | |
| than) ``np.invert(np.isin(a, b))``. | |
| Returns | |
| ------- | |
| isin : ndarray, bool | |
| Has the same shape as `element`. The values `element[isin]` | |
| are in `test_elements`. | |
| See Also | |
| -------- | |
| in1d : Flattened version of this function. | |
| numpy.lib.arraysetops : Module with a number of other functions for | |
| performing set operations on arrays. | |
| Notes | |
| ----- | |
| `isin` is an element-wise function version of the python keyword `in`. | |
| ``isin(a, b)`` is roughly equivalent to | |
| ``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences. | |
| `element` and `test_elements` are converted to arrays if they are not | |
| already. If `test_elements` is a set (or other non-sequence collection) | |
| it will be converted to an object array with one element, rather than an | |
| array of the values contained in `test_elements`. This is a consequence | |
| of the `array` constructor's way of handling non-sequence collections. | |
| Converting the set to a list usually gives the desired behavior. | |
| .. versionadded:: 1.13.0 | |
| Examples | |
| -------- | |
| >>> element = 2*np.arange(4).reshape((2, 2)) | |
| >>> element | |
| array([[0, 2], | |
| [4, 6]]) | |
| >>> test_elements = [1, 2, 4, 8] | |
| >>> mask = np.isin(element, test_elements) | |
| >>> mask | |
| array([[False, True], | |
| [ True, False]]) | |
| >>> element[mask] | |
| array([2, 4]) | |
| The indices of the matched values can be obtained with `nonzero`: | |
| >>> np.nonzero(mask) | |
| (array([0, 1]), array([1, 0])) | |
| The test can also be inverted: | |
| >>> mask = np.isin(element, test_elements, invert=True) | |
| >>> mask | |
| array([[ True, False], | |
| [False, True]]) | |
| >>> element[mask] | |
| array([0, 6]) | |
| Because of how `array` handles sets, the following does not | |
| work as expected: | |
| >>> test_set = {1, 2, 4, 8} | |
| >>> np.isin(element, test_set) | |
| array([[False, False], | |
| [False, False]]) | |
| Casting the set to a list gives the expected result: | |
| >>> np.isin(element, list(test_set)) | |
| array([[False, True], | |
| [ True, False]]) | |
| """ | |
| element = np.asarray(element) | |
| return in1d(element, test_elements, assume_unique=assume_unique, | |
| invert=invert).reshape(element.shape) | |
| def _union1d_dispatcher(ar1, ar2): | |
| return (ar1, ar2) | |
| def union1d(ar1, ar2): | |
| """ | |
| Find the union of two arrays. | |
| Return the unique, sorted array of values that are in either of the two | |
| input arrays. | |
| Parameters | |
| ---------- | |
| ar1, ar2 : array_like | |
| Input arrays. They are flattened if they are not already 1D. | |
| Returns | |
| ------- | |
| union1d : ndarray | |
| Unique, sorted union of the input arrays. | |
| See Also | |
| -------- | |
| numpy.lib.arraysetops : Module with a number of other functions for | |
| performing set operations on arrays. | |
| Examples | |
| -------- | |
| >>> np.union1d([-1, 0, 1], [-2, 0, 2]) | |
| array([-2, -1, 0, 1, 2]) | |
| To find the union of more than two arrays, use functools.reduce: | |
| >>> from functools import reduce | |
| >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) | |
| array([1, 2, 3, 4, 6]) | |
| """ | |
| return unique(np.concatenate((ar1, ar2), axis=None)) | |
| def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None): | |
| return (ar1, ar2) | |
| def setdiff1d(ar1, ar2, assume_unique=False): | |
| """ | |
| Find the set difference of two arrays. | |
| Return the unique values in `ar1` that are not in `ar2`. | |
| Parameters | |
| ---------- | |
| ar1 : array_like | |
| Input array. | |
| ar2 : array_like | |
| Input comparison array. | |
| assume_unique : bool | |
| If True, the input arrays are both assumed to be unique, which | |
| can speed up the calculation. Default is False. | |
| Returns | |
| ------- | |
| setdiff1d : ndarray | |
| 1D array of values in `ar1` that are not in `ar2`. The result | |
| is sorted when `assume_unique=False`, but otherwise only sorted | |
| if the input is sorted. | |
| See Also | |
| -------- | |
| numpy.lib.arraysetops : Module with a number of other functions for | |
| performing set operations on arrays. | |
| Examples | |
| -------- | |
| >>> a = np.array([1, 2, 3, 2, 4, 1]) | |
| >>> b = np.array([3, 4, 5, 6]) | |
| >>> np.setdiff1d(a, b) | |
| array([1, 2]) | |
| """ | |
| if assume_unique: | |
| ar1 = np.asarray(ar1).ravel() | |
| else: | |
| ar1 = unique(ar1) | |
| ar2 = unique(ar2) | |
| return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)] | |