Kareem94's picture
Update main.py
fbebb65 verified
raw
history blame
10.8 kB
from flask import Flask, request, jsonify
import torch
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import os
import gc
from functools import lru_cache
app = Flask(__name__)
model = None
tokenizer = None
device = None
def setup_device():
if torch.cuda.is_available():
return torch.device('cuda')
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
return torch.device('mps')
else:
return torch.device('cpu')
def load_tokenizer():
try:
tokenizer = RobertaTokenizer.from_pretrained('./tokenizer_readability')
tokenizer.model_max_length = 512
return tokenizer
except Exception as e:
print(f"Error loading tokenizer: {e}")
try:
return RobertaTokenizer.from_pretrained('microsoft/codebert-base')
except Exception as e2:
print(f"Fallback tokenizer failed: {e2}")
return None
def load_model():
global device
device = setup_device()
print(f"Using device: {device}")
try:
checkpoint = torch.load("codebert_readability_scorer.pth", map_location=device)
if 'config' in checkpoint:
from transformers import RobertaConfig
config = RobertaConfig.from_dict(checkpoint['config'])
model = RobertaForSequenceClassification(config)
else:
model = RobertaForSequenceClassification.from_pretrained(
'microsoft/codebert-base',
num_labels=1
)
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.to(device)
model.eval()
if device.type == 'cuda':
model.half()
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
def cleanup_gpu_memory():
if device and device.type == 'cuda':
torch.cuda.empty_cache()
gc.collect()
try:
print("Loading tokenizer...")
tokenizer = load_tokenizer()
if tokenizer:
print("Tokenizer loaded successfully!")
else:
print("Failed to load tokenizer!")
print("Loading model...")
model = load_model()
if model:
print("Model loaded successfully!")
else:
print("Failed to load model!")
except Exception as e:
print(f"Error during initialization: {str(e)}")
tokenizer = None
model = None
@app.route("/", methods=['GET'])
def home():
return jsonify({
"message": "CodeBERT Readability Evalutor API",
"status": "Model loaded" if model is not None else "Model not loaded",
"device": str(device) if device else "unknown",
"endpoints": {
"/predict": "POST with JSON body containing 'codes' array"
}
})
@app.route("/predict", methods=['POST'])
def predict_batch():
try:
if model is None or tokenizer is None:
return jsonify({"error": "Model not loaded properly"}), 500
data = request.get_json()
if not data or 'codes' not in data:
return jsonify({"error": "Missing 'codes' field in JSON body"}), 400
codes = data['codes']
if not isinstance(codes, list) or len(codes) == 0:
return jsonify({"error": "'codes' must be a non-empty array"}), 400
if len(codes) > 100:
return jsonify({"error": "Too many codes. Maximum 100 allowed."}), 400
validated_codes = []
for i, code in enumerate(codes):
if not isinstance(code, str):
return jsonify({"error": f"Code at index {i} must be a string"}), 400
if len(code.strip()) == 0:
validated_codes.append("# empty code")
elif len(code) > 50000:
return jsonify({"error": f"Code at index {i} too long. Maximum 50000 characters."}), 400
else:
validated_codes.append(code.strip())
if len(validated_codes) == 1:
score = predict_readability_with_chunking(validated_codes[0])
cleanup_gpu_memory()
return jsonify({"results": [{"score": score}]})
batch_size = min(len(validated_codes), 16)
results = []
try:
for i in range(0, len(validated_codes), batch_size):
batch = validated_codes[i:i+batch_size]
long_codes = []
short_codes = []
long_indices = []
short_indices = []
for idx, code in enumerate(batch):
try:
tokens = tokenizer.encode(code, add_special_tokens=False, max_length=1000, truncation=True)
if len(tokens) > 450:
long_codes.append(code)
long_indices.append(i + idx)
else:
short_codes.append(code)
short_indices.append(i + idx)
except Exception as e:
print(f"Tokenization error for code {i + idx}: {e}")
short_codes.append(code)
short_indices.append(i + idx)
batch_scores = [0.0] * len(batch)
if short_codes:
try:
short_scores = predict_readability_batch(short_codes)
for j, score in enumerate(short_scores):
local_idx = short_indices[j] - i
batch_scores[local_idx] = score
except Exception as e:
print(f"Batch prediction error: {e}")
for j in range(len(short_codes)):
local_idx = short_indices[j] - i
batch_scores[local_idx] = 0.0
for j, code in enumerate(long_codes):
try:
score = predict_readability_with_chunking(code)
local_idx = long_indices[j] - i
batch_scores[local_idx] = score
except Exception as e:
print(f"Chunking prediction error: {e}")
local_idx = long_indices[j] - i
batch_scores[local_idx] = 0.0
for score in batch_scores:
results.append({"score": score})
cleanup_gpu_memory()
except Exception as e:
cleanup_gpu_memory()
raise e
return jsonify({"results": results})
except Exception as e:
cleanup_gpu_memory()
return jsonify({"error": f"Batch prediction error: {str(e)}"}), 500
def predict_readability_with_chunking(code):
try:
if not code or len(code.strip()) == 0:
return 0.0
tokens = tokenizer.encode(code, add_special_tokens=False, max_length=2000, truncation=True)
if len(tokens) <= 450:
return predict_readability(code)
chunk_size = 400
overlap = 50
max_score = 0.0
for start in range(0, len(tokens), chunk_size - overlap):
end = min(start + chunk_size, len(tokens))
chunk_tokens = tokens[start:end]
try:
chunk_code = tokenizer.decode(chunk_tokens, skip_special_tokens=True)
if chunk_code.strip():
score = predict_readability(chunk_code)
max_score = max(max_score, score)
except Exception as e:
print(f"Chunk processing error: {e}")
continue
if end >= len(tokens):
break
return max_score
except Exception as e:
print(f"Chunking error: {e}")
return 0.0
def predict_readability(code):
try:
if not code or len(code.strip()) == 0:
return 0.0
dynamic_length = min(max(len(code.split()) * 2, 128), 512)
inputs = tokenizer(
code,
truncation=True,
padding='max_length',
max_length=dynamic_length,
return_tensors='pt'
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
if device.type == 'cuda':
with torch.cuda.amp.autocast():
outputs = model(**inputs)
else:
outputs = model(**inputs)
amplified_logits = 2.0 * outputs.logits
score = torch.sigmoid(amplified_logits).cpu().item()
return round(max(0.0, min(1.0, score)), 4)
except Exception as e:
print(f"Single prediction error: {e}")
return 0.0
def predict_readability_batch(codes):
try:
if not codes or len(codes) == 0:
return []
filtered_codes = [code if code and code.strip() else "# empty" for code in codes]
max_len = max([len(code.split()) * 2 for code in filtered_codes if code])
dynamic_length = min(max(max_len, 128), 512)
inputs = tokenizer(
filtered_codes,
truncation=True,
padding='max_length',
max_length=dynamic_length,
return_tensors='pt'
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
if device.type == 'cuda':
with torch.cuda.amp.autocast():
outputs = model(**inputs)
else:
outputs = model(**inputs)
amplified_logits = 2.0 * outputs.logits
scores = torch.sigmoid(amplified_logits).cpu().numpy()
return [round(max(0.0, min(1.0, float(score))), 4) for score in scores.flatten()]
except Exception as e:
print(f"Batch prediction error: {e}")
return [0.0] * len(codes)
@app.route("/health", methods=['GET'])
def health_check():
return jsonify({
"status": "healthy",
"model_loaded": model is not None,
"tokenizer_loaded": tokenizer is not None,
"device": str(device) if device else "unknown"
})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=False, threaded=True)