Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -4,12 +4,6 @@ from transformers import RobertaTokenizer
|
|
4 |
import os
|
5 |
from transformers import RobertaForSequenceClassification
|
6 |
import torch.serialization
|
7 |
-
import torch
|
8 |
-
from transformers import RobertaTokenizer, RobertaForSequenceClassification, Trainer, TrainingArguments
|
9 |
-
from torch.utils.data import Dataset
|
10 |
-
import pandas as pd
|
11 |
-
from sklearn.model_selection import train_test_split
|
12 |
-
import numpy as np
|
13 |
# Initialize Flask app
|
14 |
app = Flask(__name__)
|
15 |
|
@@ -31,39 +25,38 @@ def home():
|
|
31 |
# @app.route("/predict", methods=["POST"])
|
32 |
@app.route("/predict")
|
33 |
def predict():
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
# Run the Flask app
|
68 |
if __name__ == "__main__":
|
69 |
app.run(host="0.0.0.0", port=7860)
|
|
|
4 |
import os
|
5 |
from transformers import RobertaForSequenceClassification
|
6 |
import torch.serialization
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Initialize Flask app
|
8 |
app = Flask(__name__)
|
9 |
|
|
|
25 |
# @app.route("/predict", methods=["POST"])
|
26 |
@app.route("/predict")
|
27 |
def predict():
|
28 |
+
try:
|
29 |
+
# Debugging: print input code to check if the request is received correctly
|
30 |
+
print("Received code:", request.get_json()["code"])
|
31 |
+
|
32 |
+
data = request.get_json()
|
33 |
+
if "code" not in data:
|
34 |
+
return jsonify({"error": "Missing 'code' parameter"}), 400
|
35 |
+
|
36 |
+
code_input = data["code"]
|
37 |
+
|
38 |
+
# Tokenize the input code using the CodeBERT tokenizer
|
39 |
+
inputs = tokenizer(
|
40 |
+
code_input,
|
41 |
+
return_tensors='pt',
|
42 |
+
truncation=True,
|
43 |
+
padding='max_length',
|
44 |
+
max_length=512
|
45 |
+
)
|
46 |
+
|
47 |
+
# Make prediction using the model
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = model(**inputs)
|
50 |
+
prediction = outputs.logits.squeeze().item() # Extract the predicted score (single float)
|
51 |
+
|
52 |
+
print(f"Predicted score: {prediction}") # Debugging: Print prediction
|
53 |
+
|
54 |
+
return jsonify({"predicted_score": prediction})
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
return jsonify({"error": str(e)}), 500
|
58 |
+
|
59 |
+
|
|
|
60 |
# Run the Flask app
|
61 |
if __name__ == "__main__":
|
62 |
app.run(host="0.0.0.0", port=7860)
|