Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -5,30 +5,34 @@ import os
|
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
|
|
8 |
# Load model and tokenizer
|
9 |
def load_model():
|
10 |
# Load saved config and weights
|
11 |
checkpoint = torch.load("codebert_readability_scorer.pth", map_location=torch.device('cpu'))
|
12 |
config = RobertaConfig.from_dict(checkpoint['config'])
|
13 |
-
|
14 |
# Initialize model with loaded config
|
15 |
model = RobertaForSequenceClassification(config)
|
16 |
model.load_state_dict(checkpoint['model_state_dict'])
|
17 |
model.eval()
|
18 |
return model
|
19 |
|
|
|
20 |
# Load components
|
21 |
try:
|
22 |
-
tokenizer = RobertaTokenizer.from_pretrained("./
|
23 |
model = load_model()
|
24 |
print("Model and tokenizer loaded successfully!")
|
25 |
except Exception as e:
|
26 |
print(f"Error loading model: {str(e)}")
|
27 |
|
|
|
28 |
@app.route("/")
|
29 |
def home():
|
30 |
return request.url
|
31 |
|
|
|
32 |
@app.route("/predict")
|
33 |
def predict():
|
34 |
try:
|
@@ -39,9 +43,9 @@ def predict():
|
|
39 |
data = request.get_json(force=True, silent=True)
|
40 |
if not data or "code" not in data:
|
41 |
return jsonify({"error": f"Missing 'code' parameter. data: {data}"}), 400
|
42 |
-
|
43 |
code = data["code"]
|
44 |
-
|
45 |
# Tokenize input
|
46 |
inputs = tokenizer(
|
47 |
code,
|
@@ -50,21 +54,23 @@ def predict():
|
|
50 |
max_length=512,
|
51 |
return_tensors='pt'
|
52 |
)
|
53 |
-
|
|
|
54 |
# Make prediction
|
55 |
with torch.no_grad():
|
56 |
outputs = model(**inputs)
|
57 |
-
|
58 |
# Apply sigmoid and format score
|
59 |
score = torch.sigmoid(outputs.logits).item()
|
60 |
-
|
61 |
return jsonify({
|
62 |
"readability_score": round(score, 4),
|
63 |
"processed_code": code[:500] + "..." if len(code) > 500 else code
|
64 |
})
|
65 |
-
|
66 |
except Exception as e:
|
67 |
return jsonify({"error": str(e)}), 500
|
68 |
|
|
|
69 |
if __name__ == "__main__":
|
70 |
app.run(host="0.0.0.0", port=7860)
|
|
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
8 |
+
|
9 |
# Load model and tokenizer
|
10 |
def load_model():
|
11 |
# Load saved config and weights
|
12 |
checkpoint = torch.load("codebert_readability_scorer.pth", map_location=torch.device('cpu'))
|
13 |
config = RobertaConfig.from_dict(checkpoint['config'])
|
14 |
+
|
15 |
# Initialize model with loaded config
|
16 |
model = RobertaForSequenceClassification(config)
|
17 |
model.load_state_dict(checkpoint['model_state_dict'])
|
18 |
model.eval()
|
19 |
return model
|
20 |
|
21 |
+
|
22 |
# Load components
|
23 |
try:
|
24 |
+
tokenizer = RobertaTokenizer.from_pretrained("./tokenizer_readability")
|
25 |
model = load_model()
|
26 |
print("Model and tokenizer loaded successfully!")
|
27 |
except Exception as e:
|
28 |
print(f"Error loading model: {str(e)}")
|
29 |
|
30 |
+
|
31 |
@app.route("/")
|
32 |
def home():
|
33 |
return request.url
|
34 |
|
35 |
+
|
36 |
@app.route("/predict")
|
37 |
def predict():
|
38 |
try:
|
|
|
43 |
data = request.get_json(force=True, silent=True)
|
44 |
if not data or "code" not in data:
|
45 |
return jsonify({"error": f"Missing 'code' parameter. data: {data}"}), 400
|
46 |
+
|
47 |
code = data["code"]
|
48 |
+
|
49 |
# Tokenize input
|
50 |
inputs = tokenizer(
|
51 |
code,
|
|
|
54 |
max_length=512,
|
55 |
return_tensors='pt'
|
56 |
)
|
57 |
+
print("here")
|
58 |
+
|
59 |
# Make prediction
|
60 |
with torch.no_grad():
|
61 |
outputs = model(**inputs)
|
62 |
+
|
63 |
# Apply sigmoid and format score
|
64 |
score = torch.sigmoid(outputs.logits).item()
|
65 |
+
|
66 |
return jsonify({
|
67 |
"readability_score": round(score, 4),
|
68 |
"processed_code": code[:500] + "..." if len(code) > 500 else code
|
69 |
})
|
70 |
+
|
71 |
except Exception as e:
|
72 |
return jsonify({"error": str(e)}), 500
|
73 |
|
74 |
+
|
75 |
if __name__ == "__main__":
|
76 |
app.run(host="0.0.0.0", port=7860)
|