Update main.py
Browse files
main.py
CHANGED
@@ -1,65 +1,250 @@
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
import torch
|
3 |
-
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
4 |
import os
|
|
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def load_model():
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
# Load components
|
21 |
try:
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
model = load_model()
|
24 |
-
print("Model
|
|
|
25 |
except Exception as e:
|
26 |
-
print(f"Error
|
|
|
|
|
27 |
|
28 |
-
@app.route("/")
|
29 |
def home():
|
30 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
@app.route("/
|
33 |
-
def
|
34 |
try:
|
35 |
-
|
|
|
|
|
36 |
code = request.args.get("code")
|
37 |
if not code:
|
38 |
return jsonify({"error": "Missing 'code' URL parameter"}), 400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
import torch
|
3 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
4 |
import os
|
5 |
+
from functools import lru_cache
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
9 |
+
model = None
|
10 |
+
tokenizer = None
|
11 |
+
device = None
|
12 |
+
|
13 |
+
def setup_device():
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
return torch.device('cuda')
|
16 |
+
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
17 |
+
return torch.device('mps')
|
18 |
+
else:
|
19 |
+
return torch.device('cpu')
|
20 |
+
|
21 |
+
def load_tokenizer():
|
22 |
+
try:
|
23 |
+
tokenizer = RobertaTokenizer.from_pretrained('./tokenizer_vulnerability')
|
24 |
+
tokenizer.model_max_length = 512
|
25 |
+
return tokenizer
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error loading tokenizer: {e}")
|
28 |
+
return RobertaTokenizer.from_pretrained('microsoft/codebert-base')
|
29 |
+
|
30 |
def load_model():
|
31 |
+
global device
|
32 |
+
device = setup_device()
|
33 |
+
print(f"Using device: {device}")
|
34 |
+
|
35 |
+
try:
|
36 |
+
checkpoint = torch.load("codebert_vulnerability_scorer.pth", map_location=device)
|
37 |
+
|
38 |
+
if 'config' in checkpoint:
|
39 |
+
from transformers import RobertaConfig
|
40 |
+
config = RobertaConfig.from_dict(checkpoint['config'])
|
41 |
+
model = RobertaForSequenceClassification(config)
|
42 |
+
else:
|
43 |
+
model = RobertaForSequenceClassification.from_pretrained(
|
44 |
+
'microsoft/codebert-base',
|
45 |
+
num_labels=1
|
46 |
+
)
|
47 |
+
|
48 |
+
if 'model_state_dict' in checkpoint:
|
49 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
50 |
+
else:
|
51 |
+
model.load_state_dict(checkpoint)
|
52 |
+
|
53 |
+
model.to(device)
|
54 |
+
model.eval()
|
55 |
+
|
56 |
+
if device.type == 'cuda':
|
57 |
+
model.half()
|
58 |
+
|
59 |
+
return model
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error loading model: {e}")
|
63 |
+
raise e
|
64 |
|
65 |
+
@lru_cache(maxsize=1000)
|
66 |
+
def cached_tokenize(code_hash, max_length):
|
67 |
+
code = code_hash
|
68 |
+
return tokenizer(
|
69 |
+
code,
|
70 |
+
truncation=True,
|
71 |
+
padding='max_length',
|
72 |
+
max_length=max_length,
|
73 |
+
return_tensors='pt'
|
74 |
+
)
|
75 |
|
|
|
76 |
try:
|
77 |
+
print("Loading tokenizer...")
|
78 |
+
tokenizer = load_tokenizer()
|
79 |
+
print("Tokenizer loaded successfully!")
|
80 |
+
|
81 |
+
print("Loading model...")
|
82 |
model = load_model()
|
83 |
+
print("Model loaded successfully!")
|
84 |
+
|
85 |
except Exception as e:
|
86 |
+
print(f"Error during initialization: {str(e)}")
|
87 |
+
tokenizer = None
|
88 |
+
model = None
|
89 |
|
90 |
+
@app.route("/", methods=['GET'])
|
91 |
def home():
|
92 |
+
return jsonify({
|
93 |
+
"message": "CodeBERT Vulnerability Scorer API",
|
94 |
+
"status": "Model loaded" if model is not None else "Model not loaded",
|
95 |
+
"device": str(device) if device else "unknown",
|
96 |
+
"endpoints": {
|
97 |
+
"/predict": "POST with JSON body containing 'code' field",
|
98 |
+
"/predict_batch": "POST with JSON body containing 'codes' array",
|
99 |
+
"/predict_get": "GET with 'code' URL parameter"
|
100 |
+
}
|
101 |
+
})
|
102 |
+
|
103 |
+
@app.route("/predict", methods=['POST'])
|
104 |
+
def predict_post():
|
105 |
+
try:
|
106 |
+
if model is None or tokenizer is None:
|
107 |
+
return jsonify({"error": "Model not loaded properly"}), 500
|
108 |
+
|
109 |
+
data = request.get_json()
|
110 |
+
if not data or 'code' not in data:
|
111 |
+
return jsonify({"error": "Missing 'code' field in JSON body"}), 400
|
112 |
+
|
113 |
+
code = data['code']
|
114 |
+
if not code or not isinstance(code, str):
|
115 |
+
return jsonify({"error": "'code' field must be a non-empty string"}), 400
|
116 |
+
|
117 |
+
score = predict_vulnerability(code)
|
118 |
+
|
119 |
+
return jsonify({
|
120 |
+
"score": score,
|
121 |
+
"vulnerability_level": get_vulnerability_level(score),
|
122 |
+
"code_preview": code[:200] + "..." if len(code) > 200 else code
|
123 |
+
})
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
return jsonify({"error": f"Prediction error: {str(e)}"}), 500
|
127 |
+
|
128 |
+
@app.route("/predict_batch", methods=['POST'])
|
129 |
+
def predict_batch():
|
130 |
+
try:
|
131 |
+
if model is None or tokenizer is None:
|
132 |
+
return jsonify({"error": "Model not loaded properly"}), 500
|
133 |
+
|
134 |
+
data = request.get_json()
|
135 |
+
if not data or 'codes' not in data:
|
136 |
+
return jsonify({"error": "Missing 'codes' field in JSON body"}), 400
|
137 |
+
|
138 |
+
codes = data['codes']
|
139 |
+
if not isinstance(codes, list) or len(codes) == 0:
|
140 |
+
return jsonify({"error": "'codes' must be a non-empty array"}), 400
|
141 |
+
|
142 |
+
batch_size = min(len(codes), 16)
|
143 |
+
results = []
|
144 |
+
|
145 |
+
for i in range(0, len(codes), batch_size):
|
146 |
+
batch = codes[i:i+batch_size]
|
147 |
+
scores = predict_vulnerability_batch(batch)
|
148 |
+
|
149 |
+
for j, score in enumerate(scores):
|
150 |
+
results.append({
|
151 |
+
"index": i + j,
|
152 |
+
"score": score,
|
153 |
+
"vulnerability_level": get_vulnerability_level(score),
|
154 |
+
"code_preview": batch[j][:100] + "..." if len(batch[j]) > 100 else batch[j]
|
155 |
+
})
|
156 |
+
|
157 |
+
return jsonify({"results": results})
|
158 |
+
|
159 |
+
except Exception as e:
|
160 |
+
return jsonify({"error": f"Batch prediction error: {str(e)}"}), 500
|
161 |
|
162 |
+
@app.route("/predict_get", methods=['GET'])
|
163 |
+
def predict_get():
|
164 |
try:
|
165 |
+
if model is None or tokenizer is None:
|
166 |
+
return jsonify({"error": "Model not loaded properly"}), 500
|
167 |
+
|
168 |
code = request.args.get("code")
|
169 |
if not code:
|
170 |
return jsonify({"error": "Missing 'code' URL parameter"}), 400
|
171 |
+
|
172 |
+
score = predict_vulnerability(code)
|
173 |
+
|
174 |
+
return jsonify({
|
175 |
+
"score": score,
|
176 |
+
"vulnerability_level": get_vulnerability_level(score),
|
177 |
+
"code_preview": code[:200] + "..." if len(code) > 200 else code
|
178 |
+
})
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
return jsonify({"error": f"Prediction error: {str(e)}"}), 500
|
182 |
|
183 |
+
def predict_vulnerability(code):
|
184 |
+
dynamic_length = min(max(len(code.split()) * 2, 128), 512)
|
185 |
+
|
186 |
+
inputs = tokenizer(
|
187 |
+
code,
|
188 |
+
truncation=True,
|
189 |
+
padding='max_length',
|
190 |
+
max_length=dynamic_length,
|
191 |
+
return_tensors='pt'
|
192 |
+
)
|
193 |
+
|
194 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
195 |
+
|
196 |
+
with torch.no_grad():
|
197 |
+
with torch.cuda.amp.autocast() if device.type == 'cuda' else torch.no_grad():
|
198 |
outputs = model(**inputs)
|
199 |
+
|
200 |
+
if hasattr(outputs, 'logits'):
|
201 |
+
score = torch.sigmoid(outputs.logits).cpu().item()
|
202 |
+
else:
|
203 |
+
score = torch.sigmoid(outputs[0]).cpu().item()
|
204 |
+
|
205 |
+
return round(score, 4)
|
206 |
|
207 |
+
def predict_vulnerability_batch(codes):
|
208 |
+
max_len = max([len(code.split()) * 2 for code in codes])
|
209 |
+
dynamic_length = min(max(max_len, 128), 512)
|
210 |
+
|
211 |
+
inputs = tokenizer(
|
212 |
+
codes,
|
213 |
+
truncation=True,
|
214 |
+
padding='max_length',
|
215 |
+
max_length=dynamic_length,
|
216 |
+
return_tensors='pt'
|
217 |
+
)
|
218 |
+
|
219 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
220 |
+
|
221 |
+
with torch.no_grad():
|
222 |
+
with torch.cuda.amp.autocast() if device.type == 'cuda' else torch.no_grad():
|
223 |
+
outputs = model(**inputs)
|
224 |
+
|
225 |
+
if hasattr(outputs, 'logits'):
|
226 |
+
scores = torch.sigmoid(outputs.logits).cpu().numpy()
|
227 |
+
else:
|
228 |
+
scores = torch.sigmoid(outputs[0]).cpu().numpy()
|
229 |
+
|
230 |
+
return [round(float(score), 4) for score in scores.flatten()]
|
231 |
|
232 |
+
def get_vulnerability_level(score):
|
233 |
+
if score < 0.3:
|
234 |
+
return "Low"
|
235 |
+
elif score < 0.7:
|
236 |
+
return "Medium"
|
237 |
+
else:
|
238 |
+
return "High"
|
239 |
|
240 |
+
@app.route("/health", methods=['GET'])
|
241 |
+
def health_check():
|
242 |
+
return jsonify({
|
243 |
+
"status": "healthy",
|
244 |
+
"model_loaded": model is not None,
|
245 |
+
"tokenizer_loaded": tokenizer is not None,
|
246 |
+
"device": str(device) if device else "unknown"
|
247 |
+
})
|
248 |
|
249 |
if __name__ == "__main__":
|
250 |
+
app.run(host="0.0.0.0", port=7860, debug=False, threaded=True)
|