KarthikAI commited on
Commit
30a2bfc
·
verified ·
1 Parent(s): 007bde3

Update Dockerfile

Browse files
Files changed (1) hide show
  1. Dockerfile +14 -2
Dockerfile CHANGED
@@ -3,7 +3,12 @@ WORKDIR /code
3
  COPY . .
4
 
5
  # Install C++ build tools first
6
- RUN apt-get update && apt-get install -y build-essential && apt-get clean
 
 
 
 
 
7
 
8
  # Install all dependencies (including pillow)
9
  RUN pip install --upgrade pip && pip install -r requirements.txt
@@ -14,7 +19,14 @@ ENV TRANSFORMERS_CACHE="/data"
14
  RUN mkdir -p /data
15
 
16
  # (Optional, but speeds up runtime) Pre-download BLIP model weights
17
- RUN python -c "from transformers import BlipProcessor, BlipForConditionalGeneration; BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base'); BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base')"
 
 
 
 
 
 
 
18
 
19
  EXPOSE 7860
20
  CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
 
3
  COPY . .
4
 
5
  # Install C++ build tools first
6
+ # RUN apt-get update && apt-get install -y build-essential && apt-get clean
7
+
8
+ RUN apt-get update && \
9
+ apt-get install -y build-essential libgl1-mesa-glx libglib2.0-0 && \
10
+ apt-get clean
11
+
12
 
13
  # Install all dependencies (including pillow)
14
  RUN pip install --upgrade pip && pip install -r requirements.txt
 
19
  RUN mkdir -p /data
20
 
21
  # (Optional, but speeds up runtime) Pre-download BLIP model weights
22
+ # RUN python -c "from transformers import BlipProcessor, BlipForConditionalGeneration; BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base'); BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base')"
23
+
24
+ # Pre-download DeepFace models
25
+ RUN python -c "from deepface import DeepFace; DeepFace.analyze('https://raw.githubusercontent.com/serengil/deepface/master/tests/dataset/img1.jpg', actions=['age', 'gender', 'race', 'emotion'], enforce_detection=False)"
26
+ # Pre-download InsightFace models
27
+ RUN python -c \"import insightface; import numpy as np; app = insightface.app.FaceAnalysis(name='buffalo_l', providers=['CPUExecutionProvider']); app.prepare(ctx_id=0); img = np.zeros((640, 640, 3), dtype=np.uint8); app.get(img)\"
28
+
29
+
30
 
31
  EXPOSE 7860
32
  CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]