Spaces:
Running
Running
Upload 4 files
Browse files- Dockerfile +7 -0
- README.md +39 -10
- app.py +57 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Minimal Dockerfile for Hugging Face Spaces or local deployment
|
2 |
+
FROM python:3.10-slim
|
3 |
+
WORKDIR /code
|
4 |
+
COPY . .
|
5 |
+
RUN pip install --upgrade pip && pip install -r requirements.txt
|
6 |
+
EXPOSE 7860
|
7 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -1,10 +1,39 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hugging Face Space: Image to Chibi/Anime/Cartoon Sticker Generator
|
2 |
+
|
3 |
+
This Space provides an API endpoint `/generate` that:
|
4 |
+
1. Accepts an image and a style (chibi, anime, cartoon, etc.).
|
5 |
+
2. Captions the image using BLIP.
|
6 |
+
3. Constructs a DALL·E 3 prompt and calls OpenAI's API to generate a set of stickers.
|
7 |
+
4. Returns the generated sticker image URL.
|
8 |
+
|
9 |
+
## Flow (Numbered)
|
10 |
+
1. **User uploads an image** (`image`) and specifies a sticker style (`style`).
|
11 |
+
2. **App generates a caption** using BLIP (image captioning).
|
12 |
+
3. **App constructs a DALL·E 3 prompt** combining the style and generated caption.
|
13 |
+
4. **App sends the prompt to OpenAI DALL·E 3** and retrieves a sticker image URL.
|
14 |
+
5. **App returns a JSON** containing the caption, prompt, and image URL.
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
### POST `/generate`
|
19 |
+
- `image`: (file, required) — Input image (JPEG/PNG).
|
20 |
+
- `style`: (text, optional, default: "chibi") — Sticker style ("chibi", "anime", "cartoon", etc.).
|
21 |
+
|
22 |
+
#### Response
|
23 |
+
```json
|
24 |
+
{
|
25 |
+
"caption": "...",
|
26 |
+
"prompt": "...",
|
27 |
+
"image_url": "..."
|
28 |
+
}
|
29 |
+
```
|
30 |
+
|
31 |
+
### Requirements
|
32 |
+
- Hugging Face installs dependencies from `requirements.txt`
|
33 |
+
- Set your OpenAI API key as environment variable:
|
34 |
+
`OPENAI_API_KEY=sk-...`
|
35 |
+
|
36 |
+
### Running locally
|
37 |
+
```bash
|
38 |
+
uvicorn app:app --reload
|
39 |
+
```
|
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io # 1. For byte stream handling (file uploads)
|
2 |
+
from fastapi import FastAPI, File, UploadFile, Form # 2. FastAPI imports for API endpoints and file handling
|
3 |
+
from fastapi.responses import JSONResponse # 3. Used to return errors as JSON
|
4 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration # 4. BLIP for image captioning
|
5 |
+
from PIL import Image # 5. Pillow for image processing
|
6 |
+
import openai # 6. OpenAI library for DALL·E API calls
|
7 |
+
import os # 7. OS for environment variables
|
8 |
+
|
9 |
+
# 8. Create the FastAPI app
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# 9. Load BLIP processor and model at startup to avoid reloading on every request
|
13 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
15 |
+
|
16 |
+
# 10. Get the OpenAI API key from environment variable
|
17 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
18 |
+
|
19 |
+
# 11. Define the /generate POST endpoint
|
20 |
+
@app.post("/generate")
|
21 |
+
async def generate(
|
22 |
+
image: UploadFile = File(...), # 12. The uploaded image file
|
23 |
+
style: str = Form("chibi"), # 13. The desired style (chibi/anime/cartoon), defaults to "chibi"
|
24 |
+
):
|
25 |
+
# 14. Load and convert the uploaded image to RGB
|
26 |
+
img_bytes = await image.read()
|
27 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
28 |
+
|
29 |
+
# 15. Caption the image using BLIP
|
30 |
+
inputs = processor(img, return_tensors="pt")
|
31 |
+
out = model.generate(**inputs)
|
32 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
33 |
+
|
34 |
+
# 16. Construct the DALL·E prompt using the style and the caption
|
35 |
+
prompt = (
|
36 |
+
f"A set of twelve {style}-style digital stickers of {caption}, "
|
37 |
+
"each with a different expression: laughing, angry, crying, sulking, thinking, sleepy, blowing a kiss, winking, surprised, happy, sad, and confused. "
|
38 |
+
"Each sticker has a bold black outline and a transparent background, in a playful, close-up cartoon style."
|
39 |
+
)
|
40 |
+
|
41 |
+
# 17. Set the OpenAI API key
|
42 |
+
openai.api_key = OPENAI_API_KEY
|
43 |
+
try:
|
44 |
+
# 18. Call DALL·E 3 to generate the image
|
45 |
+
response = openai.images.generate(
|
46 |
+
model="dall-e-3",
|
47 |
+
prompt=prompt,
|
48 |
+
n=1,
|
49 |
+
size="1024x1024"
|
50 |
+
)
|
51 |
+
image_url = response.data[0].url # 19. Get the image URL from the response
|
52 |
+
except Exception as e:
|
53 |
+
# 20. Return a JSON error message if the API call fails
|
54 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
55 |
+
|
56 |
+
# 21. Return the BLIP caption, the constructed prompt, and the generated image URL
|
57 |
+
return {"caption": caption, "prompt": prompt, "image_url": image_url}
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Requirements for FastAPI app and AI inference
|
2 |
+
fastapi # Web API framework for Python
|
3 |
+
uvicorn # ASGI server for running FastAPI
|
4 |
+
pillow # Image processing (PIL)
|
5 |
+
transformers # Hugging Face Transformers library for BLIP model
|
6 |
+
torch # Required by BLIP for inference
|
7 |
+
openai # OpenAI API client for DALL·E 3 image generation
|
8 |
+
python-multipart # For file uploads with FastAPI
|