Spaces:
Running
Running
Update utils.py
Browse files
utils.py
CHANGED
@@ -5,15 +5,23 @@ os.makedirs("/data/huggingface/hub", exist_ok=True)
|
|
5 |
|
6 |
import torch
|
7 |
from diffusers import StableDiffusionImg2ImgPipeline
|
|
|
8 |
from PIL import Image
|
9 |
|
10 |
|
11 |
-
# --- Place any download or path setup here ---
|
12 |
-
MODEL_ID ="runwayml/stable-diffusion-v1-5" # Can swap for custom path if using IP-Adapter
|
13 |
-
ADAPTER_PATH = "/workspace/.cache/huggingface/ip_adapter/ip-adapter_sd15.bin"
|
14 |
-
ADAPTER_DIR = "/workspace/.cache/huggingface/ip_adapter"
|
15 |
-
DEVICE = "cpu"
|
16 |
-
MODEL_CACHE = "/workspace/.cache/huggingface"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# (Optional) Download IP-Adapter weights and patch pipeline if desired
|
19 |
|
@@ -21,24 +29,27 @@ MODEL_CACHE = "/workspace/.cache/huggingface"
|
|
21 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
22 |
MODEL_ID,
|
23 |
torch_dtype=torch.float32,
|
24 |
-
cache_dir=
|
25 |
# safety_checker=None, # Disable for demo/testing; enable in prod
|
26 |
).to(DEVICE)
|
27 |
|
28 |
pipe.load_ip_adapter(
|
29 |
-
pretrained_model_name_or_path_or_dict=
|
30 |
subfolder="models",
|
31 |
-
weight_name=
|
32 |
)
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
-
def generate_sticker(input_image, prompt):
|
42 |
"""
|
43 |
Given a user image and a prompt, generates a sticker/emoji-style portrait.
|
44 |
"""
|
@@ -51,12 +62,19 @@ def generate_sticker(input_image, prompt):
|
|
51 |
# ).to(DEVICE)
|
52 |
|
53 |
# Preprocess the image (resize, etc)
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
init_image = input_image.convert("RGB").resize((512, 512))
|
55 |
|
56 |
# Run inference (low strength for identity preservation)
|
57 |
result = pipe(
|
58 |
prompt=prompt,
|
59 |
image=init_image,
|
|
|
60 |
strength=0.65,
|
61 |
guidance_scale=7.5,
|
62 |
num_inference_steps=30
|
|
|
5 |
|
6 |
import torch
|
7 |
from diffusers import StableDiffusionImg2ImgPipeline
|
8 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
9 |
from PIL import Image
|
10 |
|
11 |
|
12 |
+
# --- Place any download or path setup here --- old
|
13 |
+
# MODEL_ID ="runwayml/stable-diffusion-v1-5" # Can swap for custom path if using IP-Adapter
|
14 |
+
# ADAPTER_PATH = "/workspace/.cache/huggingface/ip_adapter/ip-adapter_sd15.bin"
|
15 |
+
# ADAPTER_DIR = "/workspace/.cache/huggingface/ip_adapter"
|
16 |
+
# DEVICE = "cpu"
|
17 |
+
# MODEL_CACHE = "/workspace/.cache/huggingface"
|
18 |
+
|
19 |
+
# ---- SETTINGS ----
|
20 |
+
MODEL_ID = "runwayml/stable-diffusion-v1-5"
|
21 |
+
IPADAPTER_REPO = "h94/IP-Adapter"
|
22 |
+
IPADAPTER_WEIGHT_NAME = "ip-adapter_sd15.bin"
|
23 |
+
DEVICE = "cpu" # Change to "cuda" if you have GPU
|
24 |
+
CACHE_DIR = os.environ.get("HF_HOME", "/data/huggingface")
|
25 |
|
26 |
# (Optional) Download IP-Adapter weights and patch pipeline if desired
|
27 |
|
|
|
29 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
30 |
MODEL_ID,
|
31 |
torch_dtype=torch.float32,
|
32 |
+
cache_dir=CACHE_DIR,
|
33 |
# safety_checker=None, # Disable for demo/testing; enable in prod
|
34 |
).to(DEVICE)
|
35 |
|
36 |
pipe.load_ip_adapter(
|
37 |
+
pretrained_model_name_or_path_or_dict=IPADAPTER_REPO,
|
38 |
subfolder="models",
|
39 |
+
weight_name=IPADAPTER_WEIGHT_NAME
|
40 |
)
|
41 |
|
42 |
+
# Load vision encoder and processor for IP-Adapter embedding
|
43 |
+
vision_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
44 |
+
f"{IPADAPTER_REPO}/clip_vision_model",
|
45 |
+
cache_dir=CACHE_DIR,
|
46 |
+
)
|
47 |
+
image_processor = CLIPImageProcessor.from_pretrained(
|
48 |
+
f"{IPADAPTER_REPO}/clip_vision_model",
|
49 |
+
cache_dir=CACHE_DIR,
|
50 |
+
)
|
51 |
|
52 |
+
def generate_sticker(input_image: Image.Image, prompt: str):
|
53 |
"""
|
54 |
Given a user image and a prompt, generates a sticker/emoji-style portrait.
|
55 |
"""
|
|
|
62 |
# ).to(DEVICE)
|
63 |
|
64 |
# Preprocess the image (resize, etc)
|
65 |
+
face_img = input_image.convert("RGB").resize((224, 224))
|
66 |
+
inputs = image_processor(images=face_img, return_tensors="pt").to(DEVICE)
|
67 |
+
with torch.no_grad():
|
68 |
+
image_embeds = vision_encoder(**inputs).image_embeds
|
69 |
+
|
70 |
+
# 2. Prepare image for SD pipeline
|
71 |
init_image = input_image.convert("RGB").resize((512, 512))
|
72 |
|
73 |
# Run inference (low strength for identity preservation)
|
74 |
result = pipe(
|
75 |
prompt=prompt,
|
76 |
image=init_image,
|
77 |
+
image_embeds=image_embeds,
|
78 |
strength=0.65,
|
79 |
guidance_scale=7.5,
|
80 |
num_inference_steps=30
|