import torch from diffusers import StableDiffusionImg2ImgPipeline from PIL import Image # --- Place any download or path setup here --- MODEL_ID = "runwayml/stable-diffusion-v1-5" # Can swap for custom path if using IP-Adapter DEVICE = "cpu" MODEL_CACHE = "./models" # (Optional) Download IP-Adapter weights and patch pipeline if desired def generate_sticker(input_image, prompt): """ Given a user image and a prompt, generates a sticker/emoji-style portrait. """ # Load the model (download if not present) pipe = StableDiffusionImg2ImgPipeline.from_pretrained( MODEL_ID, torch_dtype=torch.float32, cache_dir=MODEL_CACHE, safety_checker=None, # Disable for demo/testing ).to(DEVICE) # Preprocess the image (resize, etc) init_image = input_image.convert("RGB").resize((512, 512)) # Run inference (low strength for identity preservation) result = pipe( prompt=prompt, image=init_image, strength=0.65, guidance_scale=7.5, num_inference_steps=30 ) # Return the generated image (as PIL) return result.images[0]