Spaces:
Runtime error
Runtime error
Duplicate from One-2-3-45/One-2-3-45
Browse filesCo-authored-by: Chao Xu <[email protected]>
- .gitattributes +36 -0
- .gitignore +4 -0
- README.md +30 -0
- app.py +671 -0
- demo_examples/00_zero123_lysol.png +3 -0
- demo_examples/01_wild_hydrant.png +3 -0
- demo_examples/02_zero123_spyro.png +3 -0
- demo_examples/03_wild2_pineapple_bottle.png +3 -0
- demo_examples/04_unsplash_broccoli.png +3 -0
- demo_examples/05_objaverse_backpack.png +3 -0
- demo_examples/06_unsplash_chocolatecake.png +3 -0
- demo_examples/07_unsplash_stool2.png +3 -0
- demo_examples/08_dalle_icecream.png +3 -0
- demo_examples/09_unsplash_bigmac.png +3 -0
- demo_examples/10_dalle3_blueberryicecream2.png +3 -0
- demo_examples/11_GSO_Crosley_Alarm_Clock_Vintage_Metal.png +3 -0
- demo_examples/12_realfusion_cactus_1.png +3 -0
- demo_examples/13_realfusion_cherry_1.png +3 -0
- demo_examples/14_dalle_cowbear.png +3 -0
- demo_examples/15_dalle3_gramophone1.png +3 -0
- demo_examples/16_dalle3_mushroom2.png +3 -0
- demo_examples/17_dalle3_rockingchair1.png +3 -0
- demo_examples/18_unsplash_mario.png +3 -0
- demo_examples/19_dalle3_stump1.png +3 -0
- demo_examples/20_objaverse_stool.png +3 -0
- demo_examples/21_objaverse_barrel.png +3 -0
- demo_examples/22_unsplash_boxtoy.png +3 -0
- demo_examples/23_objaverse_tank.png +3 -0
- demo_examples/24_wild2_yellow_duck.png +3 -0
- demo_examples/25_unsplash_teapot.png +3 -0
- demo_examples/26_unsplash_strawberrycake.png +3 -0
- demo_examples/27_objaverse_robocat.png +3 -0
- demo_examples/28_wild_goose_chef.png +3 -0
- demo_examples/29_wild_peroxide.png +3 -0
- demo_tmp/.gitignore +1 -0
- demo_tmp/.gitkeep +0 -0
- instructions_12345.md +10 -0
- packages.txt +1 -0
- pre-requirements.txt +74 -0
- requirements.txt +12 -0
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
weights/
|
| 2 |
+
data/
|
| 3 |
+
*.ipynb
|
| 4 |
+
demo_examples_*
|
README.md
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: One-2-3-45
|
| 3 |
+
emoji: 📸🚀🌟
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.36.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: One-2-3-45/One-2-3-45
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization
|
| 15 |
+
|
| 16 |
+
Paper: https://arxiv.org/abs/2306.16928
|
| 17 |
+
Code: https://github.com/One-2-3-45/One-2-3-45
|
| 18 |
+
|
| 19 |
+
## BibTeX
|
| 20 |
+
|
| 21 |
+
```bibtex
|
| 22 |
+
@misc{liu2023one2345,
|
| 23 |
+
title={One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization},
|
| 24 |
+
author={Minghua Liu and Chao Xu and Haian Jin and Linghao Chen and Mukund Varma T and Zexiang Xu and Hao Su},
|
| 25 |
+
year={2023},
|
| 26 |
+
eprint={2306.16928},
|
| 27 |
+
archivePrefix={arXiv},
|
| 28 |
+
primaryClass={cs.CV}
|
| 29 |
+
}
|
| 30 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, sys
|
| 2 |
+
from huggingface_hub import snapshot_download
|
| 3 |
+
|
| 4 |
+
is_local_run = False
|
| 5 |
+
|
| 6 |
+
code_dir = snapshot_download("One-2-3-45/code", token=os.environ['TOKEN']) if not is_local_run else "../code"
|
| 7 |
+
|
| 8 |
+
sys.path.append(code_dir)
|
| 9 |
+
|
| 10 |
+
elev_est_dir = os.path.join(code_dir, "one2345_elev_est/")
|
| 11 |
+
sys.path.append(elev_est_dir)
|
| 12 |
+
|
| 13 |
+
if not is_local_run:
|
| 14 |
+
import subprocess
|
| 15 |
+
subprocess.run(["sh", os.path.join(elev_est_dir, "install.sh")], cwd=elev_est_dir)
|
| 16 |
+
# export TORCH_CUDA_ARCH_LIST="7.0;7.2;8.0;8.6"
|
| 17 |
+
# export IABN_FORCE_CUDA=1
|
| 18 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 19 |
+
os.environ["IABN_FORCE_CUDA"] = "1"
|
| 20 |
+
os.environ["FORCE_CUDA"] = "1"
|
| 21 |
+
subprocess.run(["pip", "install", "inplace_abn"])
|
| 22 |
+
# FORCE_CUDA=1 pip install --no-cache-dir git+https://github.com/mit-han-lab/[email protected]
|
| 23 |
+
subprocess.run(["pip", "install", "--no-cache-dir", "git+https://github.com/mit-han-lab/[email protected]"])
|
| 24 |
+
|
| 25 |
+
import inspect
|
| 26 |
+
import shutil
|
| 27 |
+
import torch
|
| 28 |
+
import fire
|
| 29 |
+
import gradio as gr
|
| 30 |
+
import numpy as np
|
| 31 |
+
import plotly.graph_objects as go
|
| 32 |
+
from functools import partial
|
| 33 |
+
|
| 34 |
+
from lovely_numpy import lo
|
| 35 |
+
import cv2
|
| 36 |
+
from PIL import Image
|
| 37 |
+
import trimesh
|
| 38 |
+
import tempfile
|
| 39 |
+
from zero123_utils import init_model, predict_stage1_gradio, zero123_infer
|
| 40 |
+
from sam_utils import sam_init, sam_out_nosave
|
| 41 |
+
from utils import image_preprocess_nosave, gen_poses
|
| 42 |
+
from one2345_elev_est.tools.estimate_wild_imgs import estimate_elev
|
| 43 |
+
from rembg import remove
|
| 44 |
+
|
| 45 |
+
_GPU_INDEX = 0
|
| 46 |
+
|
| 47 |
+
_TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
|
| 48 |
+
|
| 49 |
+
_DESCRIPTION = '''
|
| 50 |
+
We reconstruct a 3D textured mesh from a single image by initially predicting multi-view images and then lifting them to 3D.
|
| 51 |
+
[<a href="http://One-2-3-45.com">Project</a>]
|
| 52 |
+
[<a href="https://github.com/One-2-3-45/One-2-3-45">GitHub</a>]
|
| 53 |
+
'''
|
| 54 |
+
# _HTML = '''<p>[<a href="https://github.com/One-2-3-45/One-2-3-45">GitHub</a>]
|
| 55 |
+
# <object alt="GitHub Repo stars" src="https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social&link=https%3A%2F%2Fgithub.com%2FOne-2-3-45%2FOne-2-3-45">
|
| 56 |
+
# </p>'''
|
| 57 |
+
# _HTML = '<script async defer src="https://buttons.github.io/buttons.js"></script> <a class="github-button" href="https://github.com/One-2-3-45/One-2-3-45" data-icon="octicon-star" data-show-count="true" aria-label="Star One-2-3-45/One-2-3-45 on GitHub">Star</a><p>'
|
| 58 |
+
|
| 59 |
+
_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Run Generation**."
|
| 60 |
+
_BBOX_1 = "Predicting bounding box for the input image..."
|
| 61 |
+
_BBOX_2 = "Bounding box adjusted. Continue adjusting or **Run Generation**."
|
| 62 |
+
_BBOX_3 = "Bounding box predicted. Adjust it using sliders or **Run Generation**."
|
| 63 |
+
_SAM = "Preprocessing the input image... (safety check, SAM segmentation, *etc*.)"
|
| 64 |
+
_GEN_1 = "Predicting multi-view images... (may take \~13 seconds) <br> Images will be shown in the bottom right blocks."
|
| 65 |
+
_GEN_2 = "Predicting nearby views and generating mesh... (may take \~35 seconds) <br> Mesh will be shown on the right."
|
| 66 |
+
_DONE = "Done! Mesh is shown on the right. <br> If it is not satisfactory, please select **Retry view** checkboxes for inaccurate views and click **Regenerate selected view(s)** at the bottom."
|
| 67 |
+
_REGEN_1 = "Selected view(s) are regenerated. You can click **Regenerate nearby views and mesh**. <br> Alternatively, if the regenerated view(s) are still not satisfactory, you can repeat the previous step (select the view and regenerate)."
|
| 68 |
+
_REGEN_2 = "Regeneration done. Mesh is shown on the right."
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
|
| 72 |
+
'''
|
| 73 |
+
:param polar_deg (float).
|
| 74 |
+
:param azimuth_deg (float).
|
| 75 |
+
:param radius_m (float).
|
| 76 |
+
:param fov_deg (float).
|
| 77 |
+
:return (5, 3) array of float with (x, y, z).
|
| 78 |
+
'''
|
| 79 |
+
polar_rad = np.deg2rad(polar_deg)
|
| 80 |
+
azimuth_rad = np.deg2rad(azimuth_deg)
|
| 81 |
+
fov_rad = np.deg2rad(fov_deg)
|
| 82 |
+
polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
|
| 83 |
+
|
| 84 |
+
# Camera pose center:
|
| 85 |
+
cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
|
| 86 |
+
cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
|
| 87 |
+
cam_z = radius_m * np.sin(polar_rad)
|
| 88 |
+
|
| 89 |
+
# Obtain four corners of camera frustum, assuming it is looking at origin.
|
| 90 |
+
# First, obtain camera extrinsics (rotation matrix only):
|
| 91 |
+
camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
|
| 92 |
+
-np.sin(azimuth_rad),
|
| 93 |
+
-np.cos(azimuth_rad) * np.sin(polar_rad)],
|
| 94 |
+
[np.sin(azimuth_rad) * np.cos(polar_rad),
|
| 95 |
+
np.cos(azimuth_rad),
|
| 96 |
+
-np.sin(azimuth_rad) * np.sin(polar_rad)],
|
| 97 |
+
[np.sin(polar_rad),
|
| 98 |
+
0.0,
|
| 99 |
+
np.cos(polar_rad)]])
|
| 100 |
+
|
| 101 |
+
# Multiply by corners in camera space to obtain go to space:
|
| 102 |
+
corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
|
| 103 |
+
corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
|
| 104 |
+
corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
|
| 105 |
+
corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
|
| 106 |
+
corn1 = np.dot(camera_R, corn1)
|
| 107 |
+
corn2 = np.dot(camera_R, corn2)
|
| 108 |
+
corn3 = np.dot(camera_R, corn3)
|
| 109 |
+
corn4 = np.dot(camera_R, corn4)
|
| 110 |
+
|
| 111 |
+
# Now attach as offset to actual 3D camera position:
|
| 112 |
+
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
|
| 113 |
+
corn_x1 = cam_x + corn1[0]
|
| 114 |
+
corn_y1 = cam_y + corn1[1]
|
| 115 |
+
corn_z1 = cam_z + corn1[2]
|
| 116 |
+
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
|
| 117 |
+
corn_x2 = cam_x + corn2[0]
|
| 118 |
+
corn_y2 = cam_y + corn2[1]
|
| 119 |
+
corn_z2 = cam_z + corn2[2]
|
| 120 |
+
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
|
| 121 |
+
corn_x3 = cam_x + corn3[0]
|
| 122 |
+
corn_y3 = cam_y + corn3[1]
|
| 123 |
+
corn_z3 = cam_z + corn3[2]
|
| 124 |
+
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
|
| 125 |
+
corn_x4 = cam_x + corn4[0]
|
| 126 |
+
corn_y4 = cam_y + corn4[1]
|
| 127 |
+
corn_z4 = cam_z + corn4[2]
|
| 128 |
+
|
| 129 |
+
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
|
| 130 |
+
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
|
| 131 |
+
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
|
| 132 |
+
|
| 133 |
+
return np.array([xs, ys, zs]).T
|
| 134 |
+
|
| 135 |
+
class CameraVisualizer:
|
| 136 |
+
def __init__(self, gradio_plot):
|
| 137 |
+
self._gradio_plot = gradio_plot
|
| 138 |
+
self._fig = None
|
| 139 |
+
self._polar = 0.0
|
| 140 |
+
self._azimuth = 0.0
|
| 141 |
+
self._radius = 0.0
|
| 142 |
+
self._raw_image = None
|
| 143 |
+
self._8bit_image = None
|
| 144 |
+
self._image_colorscale = None
|
| 145 |
+
|
| 146 |
+
def encode_image(self, raw_image, elev=90):
|
| 147 |
+
'''
|
| 148 |
+
:param raw_image (H, W, 3) array of uint8 in [0, 255].
|
| 149 |
+
'''
|
| 150 |
+
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
|
| 151 |
+
|
| 152 |
+
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
|
| 153 |
+
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
|
| 154 |
+
|
| 155 |
+
self._raw_image = raw_image
|
| 156 |
+
self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
|
| 157 |
+
# self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
|
| 158 |
+
# 'P', palette='WEB', dither=None)
|
| 159 |
+
self._image_colorscale = [
|
| 160 |
+
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
|
| 161 |
+
self._elev = elev
|
| 162 |
+
# return self.update_figure()
|
| 163 |
+
|
| 164 |
+
def update_figure(self):
|
| 165 |
+
fig = go.Figure()
|
| 166 |
+
|
| 167 |
+
if self._raw_image is not None:
|
| 168 |
+
(H, W, C) = self._raw_image.shape
|
| 169 |
+
|
| 170 |
+
x = np.zeros((H, W))
|
| 171 |
+
(y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
|
| 172 |
+
|
| 173 |
+
angle_deg = self._elev-90
|
| 174 |
+
angle = np.radians(90-self._elev)
|
| 175 |
+
rotation_matrix = np.array([
|
| 176 |
+
[np.cos(angle), 0, np.sin(angle)],
|
| 177 |
+
[0, 1, 0],
|
| 178 |
+
[-np.sin(angle), 0, np.cos(angle)]
|
| 179 |
+
])
|
| 180 |
+
# Assuming x, y, z are the original 3D coordinates of the image
|
| 181 |
+
coordinates = np.stack((x, y, z), axis=-1) # Combine x, y, z into a single array
|
| 182 |
+
# Apply the rotation matrix
|
| 183 |
+
rotated_coordinates = np.matmul(coordinates, rotation_matrix)
|
| 184 |
+
# Extract the new x, y, z coordinates from the rotated coordinates
|
| 185 |
+
x, y, z = rotated_coordinates[..., 0], rotated_coordinates[..., 1], rotated_coordinates[..., 2]
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
print('x:', lo(x))
|
| 189 |
+
print('y:', lo(y))
|
| 190 |
+
print('z:', lo(z))
|
| 191 |
+
|
| 192 |
+
fig.add_trace(go.Surface(
|
| 193 |
+
x=x, y=y, z=z,
|
| 194 |
+
surfacecolor=self._8bit_image,
|
| 195 |
+
cmin=0,
|
| 196 |
+
cmax=255,
|
| 197 |
+
colorscale=self._image_colorscale,
|
| 198 |
+
showscale=False,
|
| 199 |
+
lighting_diffuse=1.0,
|
| 200 |
+
lighting_ambient=1.0,
|
| 201 |
+
lighting_fresnel=1.0,
|
| 202 |
+
lighting_roughness=1.0,
|
| 203 |
+
lighting_specular=0.3))
|
| 204 |
+
|
| 205 |
+
scene_bounds = 3.5
|
| 206 |
+
base_radius = 2.5
|
| 207 |
+
zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
|
| 208 |
+
fov_deg = 50.0
|
| 209 |
+
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
|
| 210 |
+
|
| 211 |
+
input_cone = calc_cam_cone_pts_3d(
|
| 212 |
+
angle_deg, 0.0, base_radius, fov_deg) # (5, 3).
|
| 213 |
+
output_cone = calc_cam_cone_pts_3d(
|
| 214 |
+
self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
|
| 215 |
+
output_cones = []
|
| 216 |
+
for i in range(1,4):
|
| 217 |
+
output_cones.append(calc_cam_cone_pts_3d(
|
| 218 |
+
angle_deg, i*90, base_radius + self._radius * zoom_scale, fov_deg))
|
| 219 |
+
delta_deg = 30 if angle_deg <= -15 else -30
|
| 220 |
+
for i in range(4):
|
| 221 |
+
output_cones.append(calc_cam_cone_pts_3d(
|
| 222 |
+
angle_deg+delta_deg, 30+i*90, base_radius + self._radius * zoom_scale, fov_deg))
|
| 223 |
+
|
| 224 |
+
cones = [(input_cone, 'rgb(174, 54, 75)', 'Input view (Predicted view 1)')]
|
| 225 |
+
for i in range(len(output_cones)):
|
| 226 |
+
cones.append((output_cones[i], 'rgb(32, 77, 125)', f'Predicted view {i+2}'))
|
| 227 |
+
|
| 228 |
+
for idx, (cone, clr, legend) in enumerate(cones):
|
| 229 |
+
|
| 230 |
+
for (i, edge) in enumerate(edges):
|
| 231 |
+
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
|
| 232 |
+
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
|
| 233 |
+
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
|
| 234 |
+
fig.add_trace(go.Scatter3d(
|
| 235 |
+
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
|
| 236 |
+
line=dict(color=clr, width=3),
|
| 237 |
+
name=legend, showlegend=(i == 1) and (idx <= 1)))
|
| 238 |
+
|
| 239 |
+
# Add label.
|
| 240 |
+
if cone[0, 2] <= base_radius / 2.0:
|
| 241 |
+
fig.add_trace(go.Scatter3d(
|
| 242 |
+
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
|
| 243 |
+
mode='text', text=legend, textposition='bottom center'))
|
| 244 |
+
else:
|
| 245 |
+
fig.add_trace(go.Scatter3d(
|
| 246 |
+
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
|
| 247 |
+
mode='text', text=legend, textposition='top center'))
|
| 248 |
+
|
| 249 |
+
# look at center of scene
|
| 250 |
+
fig.update_layout(
|
| 251 |
+
# width=640,
|
| 252 |
+
# height=480,
|
| 253 |
+
# height=400,
|
| 254 |
+
height=450,
|
| 255 |
+
autosize=True,
|
| 256 |
+
hovermode=False,
|
| 257 |
+
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
|
| 258 |
+
showlegend=False,
|
| 259 |
+
legend=dict(
|
| 260 |
+
yanchor='bottom',
|
| 261 |
+
y=0.01,
|
| 262 |
+
xanchor='right',
|
| 263 |
+
x=0.99,
|
| 264 |
+
),
|
| 265 |
+
scene=dict(
|
| 266 |
+
aspectmode='manual',
|
| 267 |
+
aspectratio=dict(x=1, y=1, z=1.0),
|
| 268 |
+
camera=dict(
|
| 269 |
+
eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
|
| 270 |
+
center=dict(x=0.0, y=0.0, z=0.0),
|
| 271 |
+
up=dict(x=0.0, y=0.0, z=1.0)),
|
| 272 |
+
xaxis_title='',
|
| 273 |
+
yaxis_title='',
|
| 274 |
+
zaxis_title='',
|
| 275 |
+
xaxis=dict(
|
| 276 |
+
range=[-scene_bounds, scene_bounds],
|
| 277 |
+
showticklabels=False,
|
| 278 |
+
showgrid=True,
|
| 279 |
+
zeroline=False,
|
| 280 |
+
showbackground=True,
|
| 281 |
+
showspikes=False,
|
| 282 |
+
showline=False,
|
| 283 |
+
ticks=''),
|
| 284 |
+
yaxis=dict(
|
| 285 |
+
range=[-scene_bounds, scene_bounds],
|
| 286 |
+
showticklabels=False,
|
| 287 |
+
showgrid=True,
|
| 288 |
+
zeroline=False,
|
| 289 |
+
showbackground=True,
|
| 290 |
+
showspikes=False,
|
| 291 |
+
showline=False,
|
| 292 |
+
ticks=''),
|
| 293 |
+
zaxis=dict(
|
| 294 |
+
range=[-scene_bounds, scene_bounds],
|
| 295 |
+
showticklabels=False,
|
| 296 |
+
showgrid=True,
|
| 297 |
+
zeroline=False,
|
| 298 |
+
showbackground=True,
|
| 299 |
+
showspikes=False,
|
| 300 |
+
showline=False,
|
| 301 |
+
ticks='')))
|
| 302 |
+
|
| 303 |
+
self._fig = fig
|
| 304 |
+
return fig
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def stage1_run(models, device, cam_vis, tmp_dir,
|
| 308 |
+
input_im, scale, ddim_steps, elev=None, rerun_all=[],
|
| 309 |
+
*btn_retrys):
|
| 310 |
+
is_rerun = True if cam_vis is None else False
|
| 311 |
+
model = models['turncam'].half()
|
| 312 |
+
|
| 313 |
+
stage1_dir = os.path.join(tmp_dir, "stage1_8")
|
| 314 |
+
if not is_rerun:
|
| 315 |
+
os.makedirs(stage1_dir, exist_ok=True)
|
| 316 |
+
output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale)
|
| 317 |
+
stage2_steps = 50 # ddim_steps
|
| 318 |
+
zero123_infer(model, tmp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale)
|
| 319 |
+
elev_output = estimate_elev(tmp_dir)
|
| 320 |
+
gen_poses(tmp_dir, elev_output)
|
| 321 |
+
show_in_im1 = np.asarray(input_im, dtype=np.uint8)
|
| 322 |
+
cam_vis.encode_image(show_in_im1, elev=elev_output)
|
| 323 |
+
new_fig = cam_vis.update_figure()
|
| 324 |
+
|
| 325 |
+
flag_lower_cam = elev_output <= 75
|
| 326 |
+
if flag_lower_cam:
|
| 327 |
+
output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4,8)), device=device, ddim_steps=ddim_steps, scale=scale)
|
| 328 |
+
else:
|
| 329 |
+
output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(8,12)), device=device, ddim_steps=ddim_steps, scale=scale)
|
| 330 |
+
torch.cuda.empty_cache()
|
| 331 |
+
return (90-elev_output, new_fig, *output_ims, *output_ims_2)
|
| 332 |
+
else:
|
| 333 |
+
rerun_idx = [i for i in range(len(btn_retrys)) if btn_retrys[i]]
|
| 334 |
+
if 90-int(elev["label"]) > 75:
|
| 335 |
+
rerun_idx_in = [i if i < 4 else i+4 for i in rerun_idx]
|
| 336 |
+
else:
|
| 337 |
+
rerun_idx_in = rerun_idx
|
| 338 |
+
for idx in rerun_idx_in:
|
| 339 |
+
if idx not in rerun_all:
|
| 340 |
+
rerun_all.append(idx)
|
| 341 |
+
print("rerun_idx", rerun_all)
|
| 342 |
+
output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=rerun_idx_in, device=device, ddim_steps=ddim_steps, scale=scale)
|
| 343 |
+
outputs = [gr.update(visible=True)] * 8
|
| 344 |
+
for idx, view_idx in enumerate(rerun_idx):
|
| 345 |
+
outputs[view_idx] = output_ims[idx]
|
| 346 |
+
reset = [gr.update(value=False)] * 8
|
| 347 |
+
torch.cuda.empty_cache()
|
| 348 |
+
return (rerun_all, *reset, *outputs)
|
| 349 |
+
|
| 350 |
+
def stage2_run(models, device, tmp_dir,
|
| 351 |
+
elev, scale, is_glb=False, rerun_all=[], stage2_steps=50):
|
| 352 |
+
flag_lower_cam = 90-int(elev["label"]) <= 75
|
| 353 |
+
is_rerun = True if rerun_all else False
|
| 354 |
+
model = models['turncam'].half()
|
| 355 |
+
if not is_rerun:
|
| 356 |
+
if flag_lower_cam:
|
| 357 |
+
zero123_infer(model, tmp_dir, indices=list(range(1,8)), device=device, ddim_steps=stage2_steps, scale=scale)
|
| 358 |
+
else:
|
| 359 |
+
zero123_infer(model, tmp_dir, indices=list(range(1,4))+list(range(8,12)), device=device, ddim_steps=stage2_steps, scale=scale)
|
| 360 |
+
else:
|
| 361 |
+
print("rerun_idx", rerun_all)
|
| 362 |
+
zero123_infer(model, tmp_dir, indices=rerun_all, device=device, ddim_steps=stage2_steps, scale=scale)
|
| 363 |
+
|
| 364 |
+
dataset = tmp_dir
|
| 365 |
+
main_dir_path = os.path.dirname(os.path.abspath(
|
| 366 |
+
inspect.getfile(inspect.currentframe())))
|
| 367 |
+
torch.cuda.empty_cache()
|
| 368 |
+
os.chdir(os.path.join(code_dir, 'SparseNeuS_demo_v1/'))
|
| 369 |
+
|
| 370 |
+
bash_script = f'CUDA_VISIBLE_DEVICES={_GPU_INDEX} python exp_runner_generic_blender_val.py --specific_dataset_name {dataset} --mode export_mesh --conf confs/one2345_lod0_val_demo.conf --is_continue'
|
| 371 |
+
print(bash_script)
|
| 372 |
+
os.system(bash_script)
|
| 373 |
+
os.chdir(main_dir_path)
|
| 374 |
+
|
| 375 |
+
ply_path = os.path.join(tmp_dir, f"meshes_val_bg/lod0/mesh_00215000_gradio_lod0.ply")
|
| 376 |
+
mesh_ext = ".glb" if is_glb else ".obj"
|
| 377 |
+
mesh_path = os.path.join(tmp_dir, f"mesh{mesh_ext}")
|
| 378 |
+
# Read the textured mesh from .ply file
|
| 379 |
+
mesh = trimesh.load_mesh(ply_path)
|
| 380 |
+
axis = [1, 0, 0]
|
| 381 |
+
angle = np.radians(90)
|
| 382 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
| 383 |
+
mesh.apply_transform(rotation_matrix)
|
| 384 |
+
axis = [0, 0, 1]
|
| 385 |
+
angle = np.radians(180)
|
| 386 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
| 387 |
+
mesh.apply_transform(rotation_matrix)
|
| 388 |
+
# flip x
|
| 389 |
+
mesh.vertices[:, 0] = -mesh.vertices[:, 0]
|
| 390 |
+
mesh.faces = np.fliplr(mesh.faces)
|
| 391 |
+
# Export the mesh as .obj file with colors
|
| 392 |
+
if not is_glb:
|
| 393 |
+
mesh.export(mesh_path, file_type='obj', include_color=True)
|
| 394 |
+
else:
|
| 395 |
+
mesh.export(mesh_path, file_type='glb')
|
| 396 |
+
torch.cuda.empty_cache()
|
| 397 |
+
|
| 398 |
+
if not is_rerun:
|
| 399 |
+
return (mesh_path)
|
| 400 |
+
else:
|
| 401 |
+
return (mesh_path, [], gr.update(visible=False), gr.update(visible=False))
|
| 402 |
+
|
| 403 |
+
def nsfw_check(models, raw_im, device='cuda'):
|
| 404 |
+
safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
|
| 405 |
+
(_, has_nsfw_concept) = models['nsfw'](
|
| 406 |
+
images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
|
| 407 |
+
print('has_nsfw_concept:', has_nsfw_concept)
|
| 408 |
+
del safety_checker_input
|
| 409 |
+
if np.any(has_nsfw_concept):
|
| 410 |
+
print('NSFW content detected.')
|
| 411 |
+
# Define the image size and background color
|
| 412 |
+
image_width = image_height = 256
|
| 413 |
+
background_color = (255, 255, 255) # White
|
| 414 |
+
# Create a blank image
|
| 415 |
+
image = Image.new("RGB", (image_width, image_height), background_color)
|
| 416 |
+
from PIL import ImageDraw
|
| 417 |
+
draw = ImageDraw.Draw(image)
|
| 418 |
+
text = "Potential NSFW content was detected."
|
| 419 |
+
text_color = (255, 0, 0)
|
| 420 |
+
text_position = (10, 123)
|
| 421 |
+
draw.text(text_position, text, fill=text_color)
|
| 422 |
+
text = "Please try again with a different image."
|
| 423 |
+
text_position = (10, 133)
|
| 424 |
+
draw.text(text_position, text, fill=text_color)
|
| 425 |
+
return image
|
| 426 |
+
else:
|
| 427 |
+
print('Safety check passed.')
|
| 428 |
+
return False
|
| 429 |
+
|
| 430 |
+
def preprocess_run(predictor, models, raw_im, preprocess, *bbox_sliders):
|
| 431 |
+
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
| 432 |
+
check_results = nsfw_check(models, raw_im, device=predictor.device)
|
| 433 |
+
if check_results:
|
| 434 |
+
return check_results
|
| 435 |
+
image_sam = sam_out_nosave(predictor, raw_im.convert("RGB"), *bbox_sliders)
|
| 436 |
+
input_256 = image_preprocess_nosave(image_sam, lower_contrast=preprocess, rescale=True)
|
| 437 |
+
torch.cuda.empty_cache()
|
| 438 |
+
return input_256
|
| 439 |
+
|
| 440 |
+
def on_coords_slider(image, x_min, y_min, x_max, y_max, color=(88, 191, 131, 255)):
|
| 441 |
+
"""Draw a bounding box annotation for an image."""
|
| 442 |
+
print("on_coords_slider, drawing bbox...")
|
| 443 |
+
image.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
| 444 |
+
image_size = image.size
|
| 445 |
+
if max(image_size) > 224:
|
| 446 |
+
image.thumbnail([224, 224], Image.Resampling.LANCZOS)
|
| 447 |
+
shrink_ratio = max(image.size) / max(image_size)
|
| 448 |
+
x_min = int(x_min * shrink_ratio)
|
| 449 |
+
y_min = int(y_min * shrink_ratio)
|
| 450 |
+
x_max = int(x_max * shrink_ratio)
|
| 451 |
+
y_max = int(y_max * shrink_ratio)
|
| 452 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2BGRA)
|
| 453 |
+
image = cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, int(max(max(image.shape) / 400*2, 2)))
|
| 454 |
+
return cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) # image[:, :, ::-1]
|
| 455 |
+
|
| 456 |
+
def init_bbox(image):
|
| 457 |
+
image.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
| 458 |
+
width, height = image.size
|
| 459 |
+
image_rem = image.convert('RGBA')
|
| 460 |
+
image_nobg = remove(image_rem, alpha_matting=True)
|
| 461 |
+
arr = np.asarray(image_nobg)[:,:,-1]
|
| 462 |
+
x_nonzero = np.nonzero(arr.sum(axis=0))
|
| 463 |
+
y_nonzero = np.nonzero(arr.sum(axis=1))
|
| 464 |
+
x_min = int(x_nonzero[0].min())
|
| 465 |
+
y_min = int(y_nonzero[0].min())
|
| 466 |
+
x_max = int(x_nonzero[0].max())
|
| 467 |
+
y_max = int(y_nonzero[0].max())
|
| 468 |
+
image_mini = image.copy()
|
| 469 |
+
image_mini.thumbnail([224, 224], Image.Resampling.LANCZOS)
|
| 470 |
+
shrink_ratio = max(image_mini.size) / max(width, height)
|
| 471 |
+
x_min_shrink = int(x_min * shrink_ratio)
|
| 472 |
+
y_min_shrink = int(y_min * shrink_ratio)
|
| 473 |
+
x_max_shrink = int(x_max * shrink_ratio)
|
| 474 |
+
y_max_shrink = int(y_max * shrink_ratio)
|
| 475 |
+
|
| 476 |
+
return [on_coords_slider(image_mini, x_min_shrink, y_min_shrink, x_max_shrink, y_max_shrink),
|
| 477 |
+
gr.update(value=x_min, maximum=width),
|
| 478 |
+
gr.update(value=y_min, maximum=height),
|
| 479 |
+
gr.update(value=x_max, maximum=width),
|
| 480 |
+
gr.update(value=y_max, maximum=height)]
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
def run_demo(
|
| 484 |
+
device_idx=_GPU_INDEX,
|
| 485 |
+
ckpt='zero123-xl.ckpt'):
|
| 486 |
+
|
| 487 |
+
device = f"cuda:{device_idx}" if torch.cuda.is_available() else "cpu"
|
| 488 |
+
models = init_model(device, os.path.join(code_dir, ckpt))
|
| 489 |
+
# model = models['turncam']
|
| 490 |
+
# sampler = DDIMSampler(model)
|
| 491 |
+
|
| 492 |
+
# init sam model
|
| 493 |
+
predictor = sam_init(device_idx)
|
| 494 |
+
|
| 495 |
+
with open('instructions_12345.md', 'r') as f:
|
| 496 |
+
article = f.read()
|
| 497 |
+
|
| 498 |
+
# NOTE: Examples must match inputs
|
| 499 |
+
example_folder = os.path.join(os.path.dirname(__file__), 'demo_examples')
|
| 500 |
+
example_fns = os.listdir(example_folder)
|
| 501 |
+
example_fns.sort()
|
| 502 |
+
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
|
| 503 |
+
|
| 504 |
+
# Compose demo layout & data flow.
|
| 505 |
+
css = "#model-3d-out {height: 400px;} #plot-out {height: 450px;}"
|
| 506 |
+
with gr.Blocks(title=_TITLE, css=css) as demo:
|
| 507 |
+
gr.Markdown('# ' + _TITLE)
|
| 508 |
+
gr.Markdown(_DESCRIPTION)
|
| 509 |
+
# gr.HTML(_HTML)
|
| 510 |
+
|
| 511 |
+
with gr.Row(variant='panel'):
|
| 512 |
+
with gr.Column(scale=1.2):
|
| 513 |
+
image_block = gr.Image(type='pil', image_mode='RGBA', label='Input image', tool=None).style(height=290)
|
| 514 |
+
|
| 515 |
+
gr.Examples(
|
| 516 |
+
examples=examples_full, # NOTE: elements must match inputs list!
|
| 517 |
+
inputs=[image_block],
|
| 518 |
+
outputs=[image_block],
|
| 519 |
+
cache_examples=False,
|
| 520 |
+
label='Examples (click one of the images below to start)',
|
| 521 |
+
examples_per_page=40
|
| 522 |
+
)
|
| 523 |
+
preprocess_chk = gr.Checkbox(
|
| 524 |
+
False, label='Reduce image contrast (mitigate shadows on the backside)')
|
| 525 |
+
with gr.Accordion('Advanced options', open=False):
|
| 526 |
+
scale_slider = gr.Slider(0, 30, value=3, step=1,
|
| 527 |
+
label='Diffusion guidance scale')
|
| 528 |
+
steps_slider = gr.Slider(5, 200, value=75, step=5,
|
| 529 |
+
label='Number of diffusion inference steps')
|
| 530 |
+
glb_chk = gr.Checkbox(
|
| 531 |
+
False, label='Export the mesh in .glb format')
|
| 532 |
+
|
| 533 |
+
run_btn = gr.Button('Run Generation', variant='primary', interactive=False)
|
| 534 |
+
guide_text = gr.Markdown(_USER_GUIDE, visible=True)
|
| 535 |
+
|
| 536 |
+
with gr.Column(scale=.8):
|
| 537 |
+
with gr.Row():
|
| 538 |
+
bbox_block = gr.Image(type='pil', label="Bounding box", interactive=False).style(height=290)
|
| 539 |
+
sam_block = gr.Image(type='pil', label="SAM output", interactive=False)
|
| 540 |
+
max_width = max_height = 256
|
| 541 |
+
with gr.Row():
|
| 542 |
+
x_min_slider = gr.Slider(label="X min", interactive=True, value=0, minimum=0, maximum=max_width, step=1)
|
| 543 |
+
y_min_slider = gr.Slider(label="Y min", interactive=True, value=0, minimum=0, maximum=max_height, step=1)
|
| 544 |
+
with gr.Row():
|
| 545 |
+
x_max_slider = gr.Slider(label="X max", interactive=True, value=max_width, minimum=0, maximum=max_width, step=1)
|
| 546 |
+
y_max_slider = gr.Slider(label="Y max", interactive=True, value=max_height, minimum=0, maximum=max_height, step=1)
|
| 547 |
+
bbox_sliders = [x_min_slider, y_min_slider, x_max_slider, y_max_slider]
|
| 548 |
+
|
| 549 |
+
mesh_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="One-2-3-45's Textured Mesh", elem_id="model-3d-out")
|
| 550 |
+
|
| 551 |
+
with gr.Row(variant='panel'):
|
| 552 |
+
with gr.Column(scale=0.85):
|
| 553 |
+
elev_output = gr.Label(label='Estimated elevation (degree, w.r.t. the horizontal plane)')
|
| 554 |
+
vis_output = gr.Plot(label='Camera poses of the input view (red) and predicted views (blue)', elem_id="plot-out")
|
| 555 |
+
|
| 556 |
+
with gr.Column(scale=1.15):
|
| 557 |
+
gr.Markdown('Predicted multi-view images')
|
| 558 |
+
with gr.Row():
|
| 559 |
+
view_1 = gr.Image(interactive=False, show_label=False).style(height=200)
|
| 560 |
+
view_2 = gr.Image(interactive=False, show_label=False).style(height=200)
|
| 561 |
+
view_3 = gr.Image(interactive=False, show_label=False).style(height=200)
|
| 562 |
+
view_4 = gr.Image(interactive=False, show_label=False).style(height=200)
|
| 563 |
+
with gr.Row():
|
| 564 |
+
btn_retry_1 = gr.Checkbox(label='Retry view 1')
|
| 565 |
+
btn_retry_2 = gr.Checkbox(label='Retry view 2')
|
| 566 |
+
btn_retry_3 = gr.Checkbox(label='Retry view 3')
|
| 567 |
+
btn_retry_4 = gr.Checkbox(label='Retry view 4')
|
| 568 |
+
with gr.Row():
|
| 569 |
+
view_5 = gr.Image(interactive=False, show_label=False).style(height=200)
|
| 570 |
+
view_6 = gr.Image(interactive=False, show_label=False).style(height=200)
|
| 571 |
+
view_7 = gr.Image(interactive=False, show_label=False).style(height=200)
|
| 572 |
+
view_8 = gr.Image(interactive=False, show_label=False).style(height=200)
|
| 573 |
+
with gr.Row():
|
| 574 |
+
btn_retry_5 = gr.Checkbox(label='Retry view 5')
|
| 575 |
+
btn_retry_6 = gr.Checkbox(label='Retry view 6')
|
| 576 |
+
btn_retry_7 = gr.Checkbox(label='Retry view 7')
|
| 577 |
+
btn_retry_8 = gr.Checkbox(label='Retry view 8')
|
| 578 |
+
with gr.Row():
|
| 579 |
+
regen_view_btn = gr.Button('1. Regenerate selected view(s)', variant='secondary', visible=False)
|
| 580 |
+
regen_mesh_btn = gr.Button('2. Regenerate nearby views and mesh', variant='secondary', visible=False)
|
| 581 |
+
|
| 582 |
+
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
|
| 583 |
+
|
| 584 |
+
views = [view_1, view_2, view_3, view_4, view_5, view_6, view_7, view_8]
|
| 585 |
+
btn_retrys = [btn_retry_1, btn_retry_2, btn_retry_3, btn_retry_4, btn_retry_5, btn_retry_6, btn_retry_7, btn_retry_8]
|
| 586 |
+
|
| 587 |
+
rerun_idx = gr.State([])
|
| 588 |
+
tmp_dir = gr.State('./demo_tmp/tmp_dir')
|
| 589 |
+
|
| 590 |
+
def refresh(tmp_dir):
|
| 591 |
+
if os.path.exists(tmp_dir):
|
| 592 |
+
shutil.rmtree(tmp_dir)
|
| 593 |
+
tmp_dir = tempfile.TemporaryDirectory(dir=os.path.join(os.path.dirname(__file__), 'demo_tmp'))
|
| 594 |
+
print("create tmp_dir", tmp_dir.name)
|
| 595 |
+
clear = [gr.update(value=[])] + [None] * 5 + [gr.update(visible=False)] * 2 + [None] * 8 + [gr.update(value=False)] * 8
|
| 596 |
+
return (tmp_dir.name, *clear)
|
| 597 |
+
|
| 598 |
+
placeholder = gr.Image(visible=False)
|
| 599 |
+
tmp_func = lambda x: False if not x else gr.update(visible=False)
|
| 600 |
+
disable_func = lambda x: gr.update(interactive=False)
|
| 601 |
+
enable_func = lambda x: gr.update(interactive=True)
|
| 602 |
+
image_block.change(disable_func, inputs=run_btn, outputs=run_btn, queue=False
|
| 603 |
+
).success(fn=refresh,
|
| 604 |
+
inputs=[tmp_dir],
|
| 605 |
+
outputs=[tmp_dir, rerun_idx, bbox_block, sam_block, elev_output, vis_output, mesh_output, regen_view_btn, regen_mesh_btn, *views, *btn_retrys],
|
| 606 |
+
queue=False
|
| 607 |
+
).success(fn=tmp_func, inputs=[image_block], outputs=[placeholder], queue=False
|
| 608 |
+
).success(fn=partial(update_guide, _BBOX_1), outputs=[guide_text], queue=False
|
| 609 |
+
).success(fn=init_bbox,
|
| 610 |
+
inputs=[image_block],
|
| 611 |
+
outputs=[bbox_block, *bbox_sliders], queue=False
|
| 612 |
+
).success(fn=partial(update_guide, _BBOX_3), outputs=[guide_text], queue=False
|
| 613 |
+
).success(enable_func, inputs=run_btn, outputs=run_btn, queue=False)
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
for bbox_slider in bbox_sliders:
|
| 617 |
+
bbox_slider.release(fn=on_coords_slider,
|
| 618 |
+
inputs=[image_block, *bbox_sliders],
|
| 619 |
+
outputs=[bbox_block],
|
| 620 |
+
queue=False
|
| 621 |
+
).success(fn=partial(update_guide, _BBOX_2), outputs=[guide_text], queue=False)
|
| 622 |
+
|
| 623 |
+
cam_vis = CameraVisualizer(vis_output)
|
| 624 |
+
|
| 625 |
+
gr.Markdown(article)
|
| 626 |
+
|
| 627 |
+
# Define the function to be called when any of the btn_retry buttons are clicked
|
| 628 |
+
def on_retry_button_click(*btn_retrys):
|
| 629 |
+
any_checked = any([btn_retry for btn_retry in btn_retrys])
|
| 630 |
+
print('any_checked:', any_checked, [btn_retry for btn_retry in btn_retrys])
|
| 631 |
+
if any_checked:
|
| 632 |
+
return (gr.update(visible=True), gr.update(visible=True))
|
| 633 |
+
else:
|
| 634 |
+
return (gr.update(), gr.update())
|
| 635 |
+
# make regen_btn visible when any of the btn_retry is checked
|
| 636 |
+
for btn_retry in btn_retrys:
|
| 637 |
+
# Add the event handlers to the btn_retry buttons
|
| 638 |
+
btn_retry.change(fn=on_retry_button_click, inputs=[*btn_retrys], outputs=[regen_view_btn, regen_mesh_btn], queue=False)
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
run_btn.click(fn=partial(update_guide, _SAM), outputs=[guide_text], queue=False
|
| 642 |
+
).success(fn=partial(preprocess_run, predictor, models),
|
| 643 |
+
inputs=[image_block, preprocess_chk, *bbox_sliders],
|
| 644 |
+
outputs=[sam_block]
|
| 645 |
+
).success(fn=partial(update_guide, _GEN_1), outputs=[guide_text], queue=False
|
| 646 |
+
).success(fn=partial(stage1_run, models, device, cam_vis),
|
| 647 |
+
inputs=[tmp_dir, sam_block, scale_slider, steps_slider],
|
| 648 |
+
outputs=[elev_output, vis_output, *views]
|
| 649 |
+
).success(fn=partial(update_guide, _GEN_2), outputs=[guide_text], queue=False
|
| 650 |
+
).success(fn=partial(stage2_run, models, device),
|
| 651 |
+
inputs=[tmp_dir, elev_output, scale_slider, glb_chk],
|
| 652 |
+
outputs=[mesh_output]
|
| 653 |
+
).success(fn=partial(update_guide, _DONE), outputs=[guide_text], queue=False)
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
regen_view_btn.click(fn=partial(stage1_run, models, device, None),
|
| 657 |
+
inputs=[tmp_dir, sam_block, scale_slider, steps_slider, elev_output, rerun_idx, *btn_retrys],
|
| 658 |
+
outputs=[rerun_idx, *btn_retrys, *views]
|
| 659 |
+
).success(fn=partial(update_guide, _REGEN_1), outputs=[guide_text], queue=False)
|
| 660 |
+
regen_mesh_btn.click(fn=partial(stage2_run, models, device),
|
| 661 |
+
inputs=[tmp_dir, elev_output, scale_slider, glb_chk, rerun_idx],
|
| 662 |
+
outputs=[mesh_output, rerun_idx, regen_view_btn, regen_mesh_btn]
|
| 663 |
+
).success(fn=partial(update_guide, _REGEN_2), outputs=[guide_text], queue=False)
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
demo.launch(enable_queue=True, share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
if __name__ == '__main__':
|
| 670 |
+
|
| 671 |
+
fire.Fire(run_demo)
|
demo_examples/00_zero123_lysol.png
ADDED
|
Git LFS Details
|
demo_examples/01_wild_hydrant.png
ADDED
|
Git LFS Details
|
demo_examples/02_zero123_spyro.png
ADDED
|
Git LFS Details
|
demo_examples/03_wild2_pineapple_bottle.png
ADDED
|
Git LFS Details
|
demo_examples/04_unsplash_broccoli.png
ADDED
|
Git LFS Details
|
demo_examples/05_objaverse_backpack.png
ADDED
|
Git LFS Details
|
demo_examples/06_unsplash_chocolatecake.png
ADDED
|
Git LFS Details
|
demo_examples/07_unsplash_stool2.png
ADDED
|
Git LFS Details
|
demo_examples/08_dalle_icecream.png
ADDED
|
Git LFS Details
|
demo_examples/09_unsplash_bigmac.png
ADDED
|
Git LFS Details
|
demo_examples/10_dalle3_blueberryicecream2.png
ADDED
|
Git LFS Details
|
demo_examples/11_GSO_Crosley_Alarm_Clock_Vintage_Metal.png
ADDED
|
Git LFS Details
|
demo_examples/12_realfusion_cactus_1.png
ADDED
|
Git LFS Details
|
demo_examples/13_realfusion_cherry_1.png
ADDED
|
Git LFS Details
|
demo_examples/14_dalle_cowbear.png
ADDED
|
Git LFS Details
|
demo_examples/15_dalle3_gramophone1.png
ADDED
|
Git LFS Details
|
demo_examples/16_dalle3_mushroom2.png
ADDED
|
Git LFS Details
|
demo_examples/17_dalle3_rockingchair1.png
ADDED
|
Git LFS Details
|
demo_examples/18_unsplash_mario.png
ADDED
|
Git LFS Details
|
demo_examples/19_dalle3_stump1.png
ADDED
|
Git LFS Details
|
demo_examples/20_objaverse_stool.png
ADDED
|
Git LFS Details
|
demo_examples/21_objaverse_barrel.png
ADDED
|
Git LFS Details
|
demo_examples/22_unsplash_boxtoy.png
ADDED
|
Git LFS Details
|
demo_examples/23_objaverse_tank.png
ADDED
|
Git LFS Details
|
demo_examples/24_wild2_yellow_duck.png
ADDED
|
Git LFS Details
|
demo_examples/25_unsplash_teapot.png
ADDED
|
Git LFS Details
|
demo_examples/26_unsplash_strawberrycake.png
ADDED
|
Git LFS Details
|
demo_examples/27_objaverse_robocat.png
ADDED
|
Git LFS Details
|
demo_examples/28_wild_goose_chef.png
ADDED
|
Git LFS Details
|
demo_examples/29_wild_peroxide.png
ADDED
|
Git LFS Details
|
demo_tmp/.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
tmp*
|
demo_tmp/.gitkeep
ADDED
|
File without changes
|
instructions_12345.md
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Tuning Tips:
|
| 2 |
+
|
| 3 |
+
1. The multi-view prediction module (Zero123) operates probabilistically. If some of the predicted views are not satisfactory, you may select and regenerate them.
|
| 4 |
+
|
| 5 |
+
2. In “advanced options”, you can tune two parameters as in other common diffusion models:
|
| 6 |
+
- Diffusion Guidance Scale determines how much you want the model to respect the input information (input image + viewpoints). Increasing the scale typically results in better adherence, less diversity, and also higher image distortion.
|
| 7 |
+
|
| 8 |
+
- Number of diffusion inference steps controls the number of diffusion steps applied to generate each image. Generally, a higher value yields better results but with diminishing returns.
|
| 9 |
+
|
| 10 |
+
Enjoy creating your 3D asset!
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
libsparsehash-dev
|
pre-requirements.txt
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
+
torch>=1.12.1
|
| 3 |
+
torchvision>=0.13.1
|
| 4 |
+
albumentations>=0.4.3
|
| 5 |
+
opencv-python>=4.5.5.64
|
| 6 |
+
pudb>=2019.2
|
| 7 |
+
imageio>=2.9.0
|
| 8 |
+
imageio-ffmpeg>=0.4.2
|
| 9 |
+
pytorch-lightning>=1.4.2
|
| 10 |
+
omegaconf>=2.1.1
|
| 11 |
+
test-tube>=0.7.5
|
| 12 |
+
streamlit>=0.73.1
|
| 13 |
+
einops>=0.3.0
|
| 14 |
+
torch-fidelity>=0.3.0
|
| 15 |
+
transformers>=4.22.2
|
| 16 |
+
kornia>=0.6
|
| 17 |
+
webdataset>=0.2.5
|
| 18 |
+
torchmetrics>=0.6.0
|
| 19 |
+
fire>=0.4.0
|
| 20 |
+
gradio>=3.21.0
|
| 21 |
+
diffusers>=0.12.1
|
| 22 |
+
datasets[vision]>=2.4.0
|
| 23 |
+
carvekit-colab>=4.1.0
|
| 24 |
+
rich>=13.3.2
|
| 25 |
+
lovely-numpy>=0.2.8
|
| 26 |
+
lovely-tensors>=0.1.14
|
| 27 |
+
plotly>=5.13.1
|
| 28 |
+
-e git+https://github.com/CompVis/taming-transformers.git#egg=taming-transformers
|
| 29 |
+
# elev est
|
| 30 |
+
dl_ext
|
| 31 |
+
easydict
|
| 32 |
+
glumpy
|
| 33 |
+
gym
|
| 34 |
+
h5py
|
| 35 |
+
imageio
|
| 36 |
+
loguru
|
| 37 |
+
matplotlib
|
| 38 |
+
# mplib
|
| 39 |
+
multipledispatch
|
| 40 |
+
open3d
|
| 41 |
+
packaging
|
| 42 |
+
Pillow
|
| 43 |
+
pycocotools
|
| 44 |
+
motion-planning
|
| 45 |
+
pyrender
|
| 46 |
+
PyYAML
|
| 47 |
+
scikit_image
|
| 48 |
+
scikit_learn
|
| 49 |
+
scipy
|
| 50 |
+
screeninfo
|
| 51 |
+
setuptools
|
| 52 |
+
tensorboardX
|
| 53 |
+
termcolor
|
| 54 |
+
tqdm
|
| 55 |
+
transforms3d
|
| 56 |
+
trimesh
|
| 57 |
+
yacs
|
| 58 |
+
zarr
|
| 59 |
+
sapien
|
| 60 |
+
pyglet==1.5.27
|
| 61 |
+
wis3d
|
| 62 |
+
gdown
|
| 63 |
+
git+https://github.com/NVlabs/nvdiffrast.git
|
| 64 |
+
# shap-e
|
| 65 |
+
git+https://github.com/openai/shap-e@8625e7c
|
| 66 |
+
# segment anything
|
| 67 |
+
opencv-python
|
| 68 |
+
pycocotools
|
| 69 |
+
matplotlib
|
| 70 |
+
onnxruntime
|
| 71 |
+
onnx
|
| 72 |
+
git+https://github.com/facebookresearch/segment-anything.git
|
| 73 |
+
# rembg
|
| 74 |
+
rembg
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# sparseneus
|
| 2 |
+
# -e git+https://github.com/mit-han-lab/[email protected]#egg=torchsparse
|
| 3 |
+
opencv_python
|
| 4 |
+
trimesh
|
| 5 |
+
numpy
|
| 6 |
+
pyhocon
|
| 7 |
+
icecream
|
| 8 |
+
tqdm
|
| 9 |
+
scipy
|
| 10 |
+
PyMCubes
|
| 11 |
+
ninja
|
| 12 |
+
# sudo apt-get install libsparsehash-dev
|