import os import streamlit as st import requests # Retrieve Hugging Face API token from environment variable API_TOKEN = os.environ.get("HUGGING_FACE_API_TOKEN") # Define the Hugging Face API URL API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B" headers = {"Authorization": f"Bearer {API_TOKEN}"} # Function to query the Hugging Face API def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() # Streamlit app def main(): st.title("SQL Query Generator") # User prompt input prompt = st.text_input("Enter your prompt:", "Please generate a SQL query to fetch data from the database.") # Button to generate SQL query if st.button("Generate SQL Query"): # Generate payload for Hugging Face API payload = {"inputs": prompt} # Query the Hugging Face API with st.spinner('Generating SQL query...'): output = query(payload) # Display the SQL query response if "generated_text" in output: st.write("Generated SQL Query:") st.code(output["generated_text"]) else: st.error("Failed to generate SQL query. Please try again.") if __name__ == "__main__": main()