import gradio as gr from huggingface_hub import InferenceClient # Use the Primus-Merged model from Hugging Face client = InferenceClient("trendmicro-ailab/Llama-Primus-Merged") def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): # Build chat messages payload messages = [{"role": "system", "content": system_message}] for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) # Streamed response response = "" for chunk in client.chat_completion( messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ): delta = chunk.choices[0].delta.content or "" response += delta yield response demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a helpful security assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], ) if __name__ == "__main__": demo.launch()