Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Tone Classification System
|
2 |
+
# This implementation combines text and acoustic features to detect emotions,
|
3 |
+
# including sarcasm and figures of speech
|
4 |
+
# Part 1: Install required packages with improved error handling
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Function to install packages with error handling
|
9 |
+
def install_packages():
|
10 |
+
packages = [
|
11 |
+
"hf_xet","transformers", "pytorch-lightning", "datasets",
|
12 |
+
"numpy", "pandas", "matplotlib", "seaborn",
|
13 |
+
"librosa", "opensmile", "torch", "torchaudio",
|
14 |
+
"accelerate", "nltk", "scikit-learn"
|
15 |
+
]
|
16 |
+
|
17 |
+
for package in packages:
|
18 |
+
try:
|
19 |
+
print(f"Installing {package}...")
|
20 |
+
!pip install {package} -q
|
21 |
+
print(f"Successfully installed {package}")
|
22 |
+
except Exception as e:
|
23 |
+
print(f"Error installing {package}: {e}")
|
24 |
+
|
25 |
+
print("Package installation completed!")
|
26 |
+
|
27 |
+
install_packages()
|
28 |
+
|
29 |
+
# Part 2: Import libraries with error handling
|
30 |
+
import numpy as np
|
31 |
+
import pandas as pd
|
32 |
+
import torch
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import seaborn as sns
|
35 |
+
from sklearn.model_selection import train_test_split
|
36 |
+
from sklearn.metrics import confusion_matrix, classification_report
|
37 |
+
from torch.utils.data import Dataset, DataLoader
|
38 |
+
import torch.nn as nn
|
39 |
+
import torch.nn.functional as F
|
40 |
+
import torch.optim as optim
|
41 |
+
|
42 |
+
# Check for CUDA availability
|
43 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
44 |
+
print(f"Using device: {DEVICE}")
|
45 |
+
|
46 |
+
# Try to import libraries that might cause issues with specific error handling
|
47 |
+
try:
|
48 |
+
import torchaudio
|
49 |
+
print("Successfully imported torchaudio")
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error importing torchaudio: {e}")
|
52 |
+
print("Some audio functionality may be limited")
|
53 |
+
|
54 |
+
try:
|
55 |
+
import librosa
|
56 |
+
print("Successfully imported librosa")
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error importing librosa: {e}")
|
59 |
+
print("Audio processing capabilities will be limited")
|
60 |
+
|
61 |
+
try:
|
62 |
+
import opensmile
|
63 |
+
print("Successfully imported opensmile")
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error importing opensmile: {e}")
|
66 |
+
print("Will use fallback feature extraction methods")
|
67 |
+
|
68 |
+
# Part 3: Define constants
|
69 |
+
EMOTIONS = ["neutral", "happy", "sad", "angry", "fearful", "disgust", "surprised", "sarcastic"]
|
70 |
+
MODEL_CACHE_DIR = "./model_cache"
|
71 |
+
|
72 |
+
# Create cache directory if it doesn't exist
|
73 |
+
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
74 |
+
print(f"Using model cache directory: {MODEL_CACHE_DIR}")
|
75 |
+
|
76 |
+
# Part 4: Model Loading with Error Handling and Cache
|
77 |
+
def load_model_with_cache(model_class, model_name, cache_subdir=""):
|
78 |
+
"""Load a model with proper error handling and caching"""
|
79 |
+
cache_path = os.path.join(MODEL_CACHE_DIR, cache_subdir)
|
80 |
+
os.makedirs(cache_path, exist_ok=True)
|
81 |
+
|
82 |
+
print(f"Loading model: {model_name}")
|
83 |
+
try:
|
84 |
+
model = model_class.from_pretrained(
|
85 |
+
model_name,
|
86 |
+
cache_dir=cache_path,
|
87 |
+
local_files_only=os.path.exists(os.path.join(cache_path, model_name.replace('/', '-')))
|
88 |
+
)
|
89 |
+
print(f"Successfully loaded model: {model_name}")
|
90 |
+
return model
|
91 |
+
except KeyboardInterrupt:
|
92 |
+
print("\nModel download interrupted. Try again or download manually.")
|
93 |
+
return None
|
94 |
+
except Exception as e:
|
95 |
+
print(f"Error loading model {model_name}: {e}")
|
96 |
+
print("Will try to continue with limited functionality.")
|
97 |
+
return None
|
98 |
+
|
99 |
+
# Part 5: Modified Whisper Transcriber with Error Handling
|
100 |
+
class WhisperTranscriber:
|
101 |
+
def __init__(self, model_size="tiny"): # Changed from base to tiny for faster loading
|
102 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
103 |
+
print("Initializing Whisper transcriber...")
|
104 |
+
|
105 |
+
try:
|
106 |
+
self.processor = load_model_with_cache(
|
107 |
+
WhisperProcessor,
|
108 |
+
f"openai/whisper-{model_size}",
|
109 |
+
"whisper"
|
110 |
+
)
|
111 |
+
self.model = load_model_with_cache(
|
112 |
+
WhisperForConditionalGeneration,
|
113 |
+
f"openai/whisper-{model_size}",
|
114 |
+
"whisper"
|
115 |
+
)
|
116 |
+
|
117 |
+
if self.model is not None:
|
118 |
+
self.model = self.model.to(DEVICE)
|
119 |
+
print("Whisper model loaded successfully and moved to device")
|
120 |
+
else:
|
121 |
+
print("Failed to load Whisper model")
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
print(f"Error initializing Whisper: {e}")
|
125 |
+
self.processor = None
|
126 |
+
self.model = None
|
127 |
+
|
128 |
+
def transcribe(self, audio_path):
|
129 |
+
if self.processor is None or self.model is None:
|
130 |
+
print("Whisper not properly initialized. Cannot transcribe.")
|
131 |
+
return "Error: Transcription failed."
|
132 |
+
|
133 |
+
try:
|
134 |
+
# Load audio
|
135 |
+
waveform, sample_rate = librosa.load(audio_path, sr=16000)
|
136 |
+
|
137 |
+
# Process audio
|
138 |
+
input_features = self.processor(waveform, sampling_rate=16000, return_tensors="pt").input_features.to(DEVICE)
|
139 |
+
|
140 |
+
# Generate transcription
|
141 |
+
with torch.no_grad():
|
142 |
+
predicted_ids = self.model.generate(input_features, max_length=100)
|
143 |
+
|
144 |
+
# Decode the transcription
|
145 |
+
transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
146 |
+
return transcription
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
print(f"Error in transcription: {e}")
|
150 |
+
return "Error: Transcription failed."
|
151 |
+
|
152 |
+
# Part 6: Text-based Emotion Analysis with Fallback Options
|
153 |
+
# Improved Text-based Emotion Analysis
|
154 |
+
class TextEmotionClassifier:
|
155 |
+
def __init__(self):
|
156 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
157 |
+
print("Initializing text emotion classifier...")
|
158 |
+
|
159 |
+
# Primary emotion model
|
160 |
+
self.emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
|
161 |
+
self.tokenizer = load_model_with_cache(
|
162 |
+
AutoTokenizer,
|
163 |
+
self.emotion_model_name,
|
164 |
+
"text_emotion"
|
165 |
+
)
|
166 |
+
self.model = load_model_with_cache(
|
167 |
+
AutoModelForSequenceClassification,
|
168 |
+
self.emotion_model_name,
|
169 |
+
"text_emotion"
|
170 |
+
)
|
171 |
+
|
172 |
+
if self.model is not None:
|
173 |
+
self.model = self.model.to(DEVICE)
|
174 |
+
|
175 |
+
# Sentiment model for sarcasm detection
|
176 |
+
self.sentiment_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
177 |
+
self.sarcasm_tokenizer = load_model_with_cache(
|
178 |
+
AutoTokenizer,
|
179 |
+
self.sentiment_model_name,
|
180 |
+
"sentiment"
|
181 |
+
)
|
182 |
+
self.sarcasm_model = load_model_with_cache(
|
183 |
+
AutoModelForSequenceClassification,
|
184 |
+
self.sentiment_model_name,
|
185 |
+
"sentiment"
|
186 |
+
)
|
187 |
+
|
188 |
+
if self.sarcasm_model is not None:
|
189 |
+
self.sarcasm_model = self.sarcasm_model.to(DEVICE)
|
190 |
+
|
191 |
+
# Enhanced keyword-based analyzer as fallback and enhancement
|
192 |
+
self.keyword_analyzer = EnhancedKeywordEmotionAnalyzer()
|
193 |
+
|
194 |
+
def predict_emotion(self, text):
|
195 |
+
if self.tokenizer is None or self.model is None:
|
196 |
+
print("Text emotion model not properly initialized.")
|
197 |
+
# Use keyword-based analysis as primary method in this case
|
198 |
+
return self.keyword_analyzer.analyze(text)
|
199 |
+
|
200 |
+
try:
|
201 |
+
# Get model predictions
|
202 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(DEVICE)
|
203 |
+
with torch.no_grad():
|
204 |
+
outputs = self.model(**inputs)
|
205 |
+
|
206 |
+
# Get probabilities from model
|
207 |
+
model_probs = F.softmax(outputs.logits, dim=1).cpu().numpy()[0]
|
208 |
+
|
209 |
+
# Get keyword-based analysis
|
210 |
+
keyword_probs = self.keyword_analyzer.analyze(text)
|
211 |
+
|
212 |
+
# Combine both methods with weighting
|
213 |
+
# If text contains strong emotional keywords, give more weight to keyword analysis
|
214 |
+
keyword_strength = self.keyword_analyzer.get_keyword_strength(text)
|
215 |
+
|
216 |
+
# Adaptive weighting based on keyword strength
|
217 |
+
keyword_weight = min(0.6, keyword_strength * 0.1) # Cap at 0.6
|
218 |
+
model_weight = 1.0 - keyword_weight
|
219 |
+
|
220 |
+
# Combine predictions
|
221 |
+
combined_probs = (model_weight * model_probs) + (keyword_weight * keyword_probs)
|
222 |
+
|
223 |
+
# Normalize to ensure sum is 1
|
224 |
+
combined_probs = combined_probs / np.sum(combined_probs)
|
225 |
+
|
226 |
+
return combined_probs
|
227 |
+
|
228 |
+
except Exception as e:
|
229 |
+
print(f"Error in text emotion prediction: {e}")
|
230 |
+
# Fallback to keyword analysis
|
231 |
+
return self.keyword_analyzer.analyze(text)
|
232 |
+
|
233 |
+
def detect_sarcasm(self, text):
|
234 |
+
if self.sarcasm_tokenizer is None or self.sarcasm_model is None:
|
235 |
+
print("Sarcasm model not properly initialized.")
|
236 |
+
# Use keyword-based sarcasm detection as fallback
|
237 |
+
return self.keyword_analyzer.detect_sarcasm(text)
|
238 |
+
|
239 |
+
try:
|
240 |
+
inputs = self.sarcasm_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(DEVICE)
|
241 |
+
with torch.no_grad():
|
242 |
+
outputs = self.sarcasm_model(**inputs)
|
243 |
+
|
244 |
+
sentiment_probs = F.softmax(outputs.logits, dim=1).cpu().numpy()[0]
|
245 |
+
|
246 |
+
# Enhance with keyword-based sarcasm detection
|
247 |
+
keyword_sarcasm = self.keyword_analyzer.detect_sarcasm(text)
|
248 |
+
|
249 |
+
# If keyword analysis strongly suggests sarcasm, blend with model prediction
|
250 |
+
if keyword_sarcasm[2] > 0.5: # If sarcasm probability is high from keywords
|
251 |
+
# Give 40% weight to keyword analysis
|
252 |
+
combined_probs = 0.6 * sentiment_probs + 0.4 * keyword_sarcasm
|
253 |
+
return combined_probs
|
254 |
+
|
255 |
+
return sentiment_probs
|
256 |
+
|
257 |
+
except Exception as e:
|
258 |
+
print(f"Error in sarcasm detection: {e}")
|
259 |
+
# Fallback to keyword analysis
|
260 |
+
return self.keyword_analyzer.detect_sarcasm(text)
|
261 |
+
|
262 |
+
# Enhanced keyword-based emotion analyzer
|
263 |
+
class EnhancedKeywordEmotionAnalyzer:
|
264 |
+
def __init__(self):
|
265 |
+
# Enhanced emotion keywords with weights
|
266 |
+
self.emotion_keywords = {
|
267 |
+
"happy": [
|
268 |
+
("happy", 1.0), ("joy", 1.0), ("delight", 0.9), ("excited", 0.9),
|
269 |
+
("glad", 0.8), ("pleased", 0.8), ("cheerful", 0.9), ("smile", 0.7),
|
270 |
+
("enjoy", 0.8), ("wonderful", 0.8), ("great", 0.7), ("excellent", 0.8),
|
271 |
+
("thrilled", 1.0), ("ecstatic", 1.0), ("content", 0.7), ("satisfied", 0.7),
|
272 |
+
("pleasure", 0.8), ("fantastic", 0.9), ("awesome", 0.9), ("love", 0.9),
|
273 |
+
("amazing", 0.9), ("perfect", 0.8), ("fun", 0.8), ("delighted", 1.0)
|
274 |
+
],
|
275 |
+
"sad": [
|
276 |
+
("sad", 1.0), ("unhappy", 0.9), ("depressed", 1.0), ("sorrow", 1.0),
|
277 |
+
("grief", 1.0), ("tearful", 0.9), ("miserable", 1.0), ("disappointed", 0.8),
|
278 |
+
("upset", 0.8), ("down", 0.7), ("heartbroken", 1.0), ("gloomy", 0.9),
|
279 |
+
("devastated", 1.0), ("hurt", 0.8), ("blue", 0.7), ("regret", 0.8),
|
280 |
+
("dejected", 0.9), ("dismal", 0.9), ("lonely", 0.8), ("terrible", 0.8),
|
281 |
+
("hopeless", 0.9), ("lost", 0.7), ("crying", 0.9), ("tragic", 0.9)
|
282 |
+
],
|
283 |
+
"angry": [
|
284 |
+
("angry", 1.0), ("mad", 0.9), ("furious", 1.0), ("annoyed", 0.8),
|
285 |
+
("irritated", 0.8), ("enraged", 1.0), ("livid", 1.0), ("outraged", 1.0),
|
286 |
+
("frustrated", 0.8), ("infuriated", 1.0), ("pissed", 0.9), ("hate", 0.9),
|
287 |
+
("hostile", 0.9), ("bitter", 0.8), ("resentful", 0.8), ("fuming", 0.9),
|
288 |
+
("irate", 1.0), ("outraged", 1.0), ("seething", 1.0), ("cross", 0.7),
|
289 |
+
("exasperated", 0.8), ("disgusted", 0.8), ("indignant", 0.9), ("rage", 1.0)
|
290 |
+
],
|
291 |
+
"fearful": [
|
292 |
+
("afraid", 1.0), ("scared", 1.0), ("frightened", 1.0), ("fear", 0.9),
|
293 |
+
("terror", 1.0), ("panic", 1.0), ("horrified", 1.0), ("worried", 0.8),
|
294 |
+
("anxious", 0.9), ("nervous", 0.8), ("terrified", 1.0), ("dread", 0.9),
|
295 |
+
("alarmed", 0.8), ("petrified", 1.0), ("threatened", 0.8), ("intimidated", 0.8),
|
296 |
+
("apprehensive", 0.8), ("uneasy", 0.7), ("tense", 0.7), ("stressed", 0.7),
|
297 |
+
("spooked", 0.9), ("paranoid", 0.9), ("freaked", 0.9), ("jumpy", 0.8)
|
298 |
+
],
|
299 |
+
"disgust": [
|
300 |
+
("disgust", 1.0), ("gross", 0.9), ("repulsed", 1.0), ("revolted", 1.0),
|
301 |
+
("sick", 0.8), ("nauseous", 0.8), ("yuck", 0.9), ("ew", 0.8),
|
302 |
+
("nasty", 0.9), ("repugnant", 1.0), ("foul", 0.9), ("appalled", 0.9),
|
303 |
+
("sickened", 0.9), ("offended", 0.8), ("distaste", 0.9), ("aversion", 0.9),
|
304 |
+
("abhorrent", 1.0), ("odious", 1.0), ("repellent", 1.0), ("objectionable", 0.8),
|
305 |
+
("detestable", 1.0), ("loathsome", 1.0), ("vile", 1.0), ("horrid", 0.9)
|
306 |
+
],
|
307 |
+
"surprised": [
|
308 |
+
("surprised", 1.0), ("shocked", 0.9), ("astonished", 1.0), ("amazed", 0.9),
|
309 |
+
("startled", 0.9), ("stunned", 0.9), ("speechless", 0.8), ("unexpected", 0.8),
|
310 |
+
("wow", 0.8), ("whoa", 0.8), ("unbelievable", 0.8), ("incredible", 0.8),
|
311 |
+
("dumbfounded", 1.0), ("flabbergasted", 1.0), ("staggered", 0.9), ("aghast", 0.9),
|
312 |
+
("astounded", 1.0), ("taken aback", 0.9), ("disbelief", 0.8), ("bewildered", 0.8),
|
313 |
+
("thunderstruck", 1.0), ("wonder", 0.7), ("sudden", 0.6), ("jaw-dropping", 0.9)
|
314 |
+
],
|
315 |
+
"neutral": [
|
316 |
+
("okay", 0.7), ("fine", 0.7), ("alright", 0.7), ("normal", 0.8),
|
317 |
+
("calm", 0.8), ("steady", 0.8), ("balanced", 0.8), ("ordinary", 0.8),
|
318 |
+
("routine", 0.8), ("regular", 0.8), ("standard", 0.8), ("moderate", 0.8),
|
319 |
+
("usual", 0.8), ("typical", 0.8), ("average", 0.8), ("common", 0.8),
|
320 |
+
("so-so", 0.7), ("fair", 0.7), ("acceptable", 0.7), ("stable", 0.8),
|
321 |
+
("unchanged", 0.8), ("plain", 0.7), ("mild", 0.7), ("middle-of-the-road", 0.8)
|
322 |
+
],
|
323 |
+
"sarcastic": [
|
324 |
+
("yeah right", 1.0), ("sure thing", 0.9), ("oh great", 0.9), ("how wonderful", 0.9),
|
325 |
+
("wow", 0.7), ("really", 0.7), ("obviously", 0.8), ("definitely", 0.7),
|
326 |
+
("of course", 0.7), ("totally", 0.7), ("exactly", 0.7), ("perfect", 0.7),
|
327 |
+
("brilliant", 0.8), ("genius", 0.8), ("whatever", 0.8), ("right", 0.7),
|
328 |
+
("nice job", 0.8), ("good one", 0.8), ("bravo", 0.8), ("slow clap", 1.0),
|
329 |
+
("im shocked", 0.9), ("never would have guessed", 0.9), ("shocking", 0.7), ("unbelievable", 0.7)
|
330 |
+
]
|
331 |
+
}
|
332 |
+
|
333 |
+
# Sarcasm indicators
|
334 |
+
self.sarcasm_indicators = [
|
335 |
+
"yeah right", "sure thing", "oh great", "riiiight", "suuure",
|
336 |
+
"*slow clap*", "/s", "wow just wow", "you don't say", "no kidding",
|
337 |
+
"what a surprise", "shocker", "congratulations", "well done", "genius",
|
338 |
+
"oh wow", "oh really", "totally", "absolutely", "clearly", "obviously",
|
339 |
+
"genius idea", "brilliant plan", "fantastic job", "amazing work"
|
340 |
+
]
|
341 |
+
|
342 |
+
# Negation words
|
343 |
+
self.negations = [
|
344 |
+
"not", "no", "never", "none", "nothing", "neither", "nor", "nowhere",
|
345 |
+
"hardly", "scarcely", "barely", "doesn't", "isn't", "wasn't", "shouldn't",
|
346 |
+
"wouldn't", "couldn't", "won't", "can't", "don't", "didn't", "haven't"
|
347 |
+
]
|
348 |
+
|
349 |
+
# Intensifiers
|
350 |
+
self.intensifiers = [
|
351 |
+
"very", "really", "extremely", "absolutely", "completely", "totally",
|
352 |
+
"utterly", "quite", "particularly", "especially", "remarkably", "truly",
|
353 |
+
"so", "too", "such", "incredibly", "exceedingly", "extraordinarily"
|
354 |
+
]
|
355 |
+
|
356 |
+
# Compile patterns for more efficient matching
|
357 |
+
import re
|
358 |
+
self.emotion_patterns = {}
|
359 |
+
for emotion, keywords in self.emotion_keywords.items():
|
360 |
+
self.emotion_patterns[emotion] = [
|
361 |
+
(re.compile(r'\b' + re.escape(word) + r'\b', re.IGNORECASE), weight)
|
362 |
+
for word, weight in keywords
|
363 |
+
]
|
364 |
+
|
365 |
+
self.negation_pattern = re.compile(r'\b(' + '|'.join(re.escape(n) for n in self.negations) + r')\s+(\w+)', re.IGNORECASE)
|
366 |
+
self.intensifier_pattern = re.compile(r'\b(' + '|'.join(re.escape(i) for i in self.intensifiers) + r')\s+(\w+)', re.IGNORECASE)
|
367 |
+
|
368 |
+
def analyze(self, text):
|
369 |
+
"""
|
370 |
+
Analyze text for emotions using enhanced keyword matching
|
371 |
+
Returns numpy array of emotion probabilities
|
372 |
+
"""
|
373 |
+
# Initialize scores
|
374 |
+
emotion_scores = {emotion: 0.0 for emotion in EMOTIONS}
|
375 |
+
|
376 |
+
# Set base score for neutral
|
377 |
+
emotion_scores["neutral"] = 1.0
|
378 |
+
|
379 |
+
# Convert to lowercase for case-insensitive matching
|
380 |
+
text_lower = text.lower()
|
381 |
+
|
382 |
+
# Process each emotion
|
383 |
+
for emotion, patterns in self.emotion_patterns.items():
|
384 |
+
for pattern, weight in patterns:
|
385 |
+
matches = pattern.findall(text_lower)
|
386 |
+
if matches:
|
387 |
+
# Add score based on number of matches and their weights
|
388 |
+
emotion_scores[emotion] += len(matches) * weight
|
389 |
+
|
390 |
+
# Process negations - look for "not happy" patterns
|
391 |
+
negation_matches = self.negation_pattern.finditer(text_lower)
|
392 |
+
for match in negation_matches:
|
393 |
+
negation, word = match.groups()
|
394 |
+
# Check if the negated word is in any emotion keywords
|
395 |
+
for emotion, keywords in self.emotion_keywords.items():
|
396 |
+
if any(word == kw[0] for kw in keywords):
|
397 |
+
# Reduce score for this emotion and slightly increase opposite emotions
|
398 |
+
emotion_scores[emotion] -= 0.7
|
399 |
+
|
400 |
+
# Increase opposite emotions (e.g., if "not happy", increase "sad")
|
401 |
+
if emotion == "happy":
|
402 |
+
emotion_scores["sad"] += 0.3
|
403 |
+
elif emotion == "sad":
|
404 |
+
emotion_scores["happy"] += 0.3
|
405 |
+
|
406 |
+
# Process intensifiers - "very happy" should increase score
|
407 |
+
intensifier_matches = self.intensifier_pattern.finditer(text_lower)
|
408 |
+
for match in intensifier_matches:
|
409 |
+
intensifier, word = match.groups()
|
410 |
+
# Check if the intensified word is in any emotion keywords
|
411 |
+
for emotion, keywords in self.emotion_keywords.items():
|
412 |
+
if any(word == kw[0] for kw in keywords):
|
413 |
+
# Increase score for this emotion
|
414 |
+
emotion_scores[emotion] += 0.5
|
415 |
+
|
416 |
+
# Ensure no negative scores
|
417 |
+
for emotion in emotion_scores:
|
418 |
+
emotion_scores[emotion] = max(0, emotion_scores[emotion])
|
419 |
+
|
420 |
+
# Normalize to probabilities
|
421 |
+
total = sum(emotion_scores.values())
|
422 |
+
if total > 0:
|
423 |
+
probs = {emotion: score/total for emotion, score in emotion_scores.items()}
|
424 |
+
else:
|
425 |
+
# If no emotions detected, default to neutral
|
426 |
+
probs = {emotion: 0.0 for emotion in EMOTIONS}
|
427 |
+
probs["neutral"] = 1.0
|
428 |
+
|
429 |
+
# Convert to numpy array in the same order as EMOTIONS
|
430 |
+
return np.array([probs[emotion] for emotion in EMOTIONS])
|
431 |
+
|
432 |
+
def detect_sarcasm(self, text):
|
433 |
+
"""
|
434 |
+
Detect sarcasm in text
|
435 |
+
Returns [negative, neutral, positive] probability array where high "positive"
|
436 |
+
with negative context indicates sarcasm
|
437 |
+
"""
|
438 |
+
text_lower = text.lower()
|
439 |
+
sarcasm_score = 0.0
|
440 |
+
|
441 |
+
# Check for direct sarcasm indicators
|
442 |
+
for indicator in self.sarcasm_indicators:
|
443 |
+
if indicator in text_lower:
|
444 |
+
sarcasm_score += 0.3
|
445 |
+
|
446 |
+
# Check for common sarcasm patterns
|
447 |
+
positive_words = [kw[0] for kw in self.emotion_keywords["happy"]]
|
448 |
+
has_positive = any(word in text_lower for word in positive_words)
|
449 |
+
|
450 |
+
negative_context = any(neg in text_lower for neg in ["terrible", "awful", "horrible", "fail", "disaster", "mess"])
|
451 |
+
|
452 |
+
# Positive words in negative context suggests sarcasm
|
453 |
+
if has_positive and negative_context:
|
454 |
+
sarcasm_score += 0.4
|
455 |
+
|
456 |
+
# Check for excessive punctuation which might indicate sarcasm
|
457 |
+
if "!!!" in text or "?!" in text:
|
458 |
+
sarcasm_score += 0.2
|
459 |
+
|
460 |
+
# Cap the score
|
461 |
+
sarcasm_score = min(1.0, sarcasm_score)
|
462 |
+
|
463 |
+
# If sarcasm detected, return sentiment array biased toward sarcasm
|
464 |
+
# [negative, neutral, positive] - high positive with negative context indicates sarcasm
|
465 |
+
if sarcasm_score > 0.3:
|
466 |
+
return np.array([0.1, 0.1, 0.8]) # High positive signal for sarcasm detection
|
467 |
+
else:
|
468 |
+
# Return balanced array (no strong indication of sarcasm)
|
469 |
+
return np.array([0.33, 0.34, 0.33])
|
470 |
+
|
471 |
+
def get_keyword_strength(self, text):
|
472 |
+
"""
|
473 |
+
Measure the strength of emotional keywords in the text
|
474 |
+
Returns a value between 0 and 10
|
475 |
+
"""
|
476 |
+
text_lower = text.lower()
|
477 |
+
total_matches = 0
|
478 |
+
weighted_matches = 0
|
479 |
+
|
480 |
+
# Count all matches across all emotions with their weights
|
481 |
+
for emotion, patterns in self.emotion_patterns.items():
|
482 |
+
for pattern, weight in patterns:
|
483 |
+
matches = pattern.findall(text_lower)
|
484 |
+
total_matches += len(matches)
|
485 |
+
weighted_matches += len(matches) * weight
|
486 |
+
|
487 |
+
# Calculate strength score on a scale of 0-10
|
488 |
+
if total_matches > 0:
|
489 |
+
avg_weight = weighted_matches / total_matches
|
490 |
+
# Scale based on number of matches and their average weight
|
491 |
+
strength = min(10, (total_matches * avg_weight) / 2)
|
492 |
+
return strength
|
493 |
+
else:
|
494 |
+
return 0.0
|
495 |
+
|
496 |
+
# Part 7: Acoustic Feature Extraction with Fallback
|
497 |
+
class AcousticFeatureExtractor:
|
498 |
+
def __init__(self):
|
499 |
+
self.use_opensmile = True
|
500 |
+
try:
|
501 |
+
import opensmile
|
502 |
+
# Initialize OpenSMILE with the eGeMAPS feature set instead of ComParE_2016
|
503 |
+
# eGeMAPS is specifically designed for voice analysis and emotion recognition
|
504 |
+
self.smile = opensmile.Smile(
|
505 |
+
feature_set=opensmile.FeatureSet.eGeMAPSv02,
|
506 |
+
feature_level=opensmile.FeatureLevel.Functionals,
|
507 |
+
)
|
508 |
+
print("OpenSMILE feature extractor initialized successfully with eGeMAPS")
|
509 |
+
except Exception as e:
|
510 |
+
print(f"Failed to initialize OpenSMILE: {e}")
|
511 |
+
print("Using librosa for feature extraction instead.")
|
512 |
+
self.use_opensmile = False
|
513 |
+
|
514 |
+
def extract_features(self, audio_path):
|
515 |
+
try:
|
516 |
+
if self.use_opensmile:
|
517 |
+
# Use OpenSMILE for feature extraction
|
518 |
+
features = self.smile.process_file(audio_path)
|
519 |
+
return features.values
|
520 |
+
else:
|
521 |
+
# Fallback to improved librosa feature extraction
|
522 |
+
return self._extract_librosa_features(audio_path)
|
523 |
+
except Exception as e:
|
524 |
+
print(f"Error in acoustic feature extraction: {e}")
|
525 |
+
print("Using dummy features as fallback")
|
526 |
+
# Return dummy features in case of error
|
527 |
+
return np.zeros(88) # eGeMAPS dimension
|
528 |
+
|
529 |
+
def _extract_librosa_features(self, audio_path):
|
530 |
+
"""Improved librosa feature extraction focusing on emotion-relevant features"""
|
531 |
+
try:
|
532 |
+
# Load audio
|
533 |
+
y, sr = librosa.load(audio_path, sr=22050)
|
534 |
+
|
535 |
+
# Extract features specifically relevant to emotion detection
|
536 |
+
|
537 |
+
# 1. Pitch features (fundamental frequency)
|
538 |
+
pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
|
539 |
+
pitch_mean = np.mean(pitches[magnitudes > np.median(magnitudes)])
|
540 |
+
pitch_std = np.std(pitches[magnitudes > np.median(magnitudes)])
|
541 |
+
|
542 |
+
# 2. Energy/intensity features
|
543 |
+
rms = librosa.feature.rms(y=y)[0]
|
544 |
+
energy_mean = np.mean(rms)
|
545 |
+
energy_std = np.std(rms)
|
546 |
+
|
547 |
+
# 3. Tempo and rhythm features
|
548 |
+
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
|
549 |
+
|
550 |
+
# 4. Spectral features
|
551 |
+
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
|
552 |
+
spectral_bandwidth = librosa.feature.spectral_bandwidth(y=y, sr=sr)[0]
|
553 |
+
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
|
554 |
+
|
555 |
+
# 5. Voice quality features
|
556 |
+
zero_crossing_rate = librosa.feature.zero_crossing_rate(y)[0]
|
557 |
+
|
558 |
+
# Compute statistics for each feature
|
559 |
+
features = []
|
560 |
+
for feature in [spectral_centroid, spectral_bandwidth, spectral_rolloff, zero_crossing_rate]:
|
561 |
+
features.extend([np.mean(feature), np.std(feature), np.min(feature), np.max(feature)])
|
562 |
+
|
563 |
+
# Add pitch and energy features
|
564 |
+
features.extend([pitch_mean, pitch_std, energy_mean, energy_std, tempo])
|
565 |
+
|
566 |
+
# Add MFCCs (critical for speech emotion)
|
567 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
568 |
+
for mfcc in mfccs:
|
569 |
+
features.extend([np.mean(mfcc), np.std(mfcc)])
|
570 |
+
|
571 |
+
# Convert to numpy array
|
572 |
+
features = np.array(features)
|
573 |
+
|
574 |
+
# Handle NaN values
|
575 |
+
features = np.nan_to_num(features)
|
576 |
+
|
577 |
+
# Pad or truncate to match eGeMAPS dimension (88)
|
578 |
+
if len(features) < 88:
|
579 |
+
features = np.pad(features, (0, 88 - len(features)))
|
580 |
+
else:
|
581 |
+
features = features[:88]
|
582 |
+
|
583 |
+
return features
|
584 |
+
|
585 |
+
except Exception as e:
|
586 |
+
print(f"Error in librosa feature extraction: {e}")
|
587 |
+
return np.zeros(88) # Same dimension as eGeMAPS
|
588 |
+
|
589 |
+
|
590 |
+
# Part 8: Acoustic Emotion Classifier
|
591 |
+
class AcousticEmotionClassifier(nn.Module):
|
592 |
+
def __init__(self, input_dim, hidden_dim=128, num_classes=len(EMOTIONS)):
|
593 |
+
super().__init__()
|
594 |
+
|
595 |
+
# Normalize input features
|
596 |
+
self.batch_norm = nn.BatchNorm1d(input_dim)
|
597 |
+
|
598 |
+
# Feature extraction layers
|
599 |
+
self.feature_extractor = nn.Sequential(
|
600 |
+
nn.Linear(input_dim, hidden_dim * 2),
|
601 |
+
nn.ReLU(),
|
602 |
+
nn.Dropout(0.3),
|
603 |
+
nn.Linear(hidden_dim * 2, hidden_dim),
|
604 |
+
nn.ReLU(),
|
605 |
+
nn.Dropout(0.3)
|
606 |
+
)
|
607 |
+
|
608 |
+
# Emotion classification head
|
609 |
+
self.classifier = nn.Sequential(
|
610 |
+
nn.Linear(hidden_dim, hidden_dim // 2),
|
611 |
+
nn.ReLU(),
|
612 |
+
nn.Dropout(0.2),
|
613 |
+
nn.Linear(hidden_dim // 2, num_classes)
|
614 |
+
)
|
615 |
+
|
616 |
+
# Initialize weights properly
|
617 |
+
self._init_weights()
|
618 |
+
|
619 |
+
def _init_weights(self):
|
620 |
+
"""Initialize weights with Xavier initialization"""
|
621 |
+
for m in self.modules():
|
622 |
+
if isinstance(m, nn.Linear):
|
623 |
+
nn.init.xavier_uniform_(m.weight)
|
624 |
+
if m.bias is not None:
|
625 |
+
nn.init.zeros_(m.bias)
|
626 |
+
|
627 |
+
def forward(self, x):
|
628 |
+
# Handle different input shapes
|
629 |
+
if len(x.shape) == 1:
|
630 |
+
x = x.unsqueeze(0) # Add batch dimension
|
631 |
+
|
632 |
+
# Normalize features
|
633 |
+
x = self.batch_norm(x)
|
634 |
+
|
635 |
+
# Extract features
|
636 |
+
features = self.feature_extractor(x)
|
637 |
+
|
638 |
+
# Classify emotions
|
639 |
+
output = self.classifier(features)
|
640 |
+
|
641 |
+
return output
|
642 |
+
|
643 |
+
|
644 |
+
class PretrainedAudioClassifier:
|
645 |
+
"""A rule-based classifier for audio emotion detection until proper training"""
|
646 |
+
|
647 |
+
def __init__(self):
|
648 |
+
# Define acoustic feature thresholds for emotions based on research
|
649 |
+
# These are simplified heuristics based on acoustic phonetics research
|
650 |
+
self.feature_thresholds = {
|
651 |
+
"happy": {
|
652 |
+
"pitch_mean": (220, 400), # Higher pitch for happiness
|
653 |
+
"energy_mean": (0.6, 1.0), # Higher energy
|
654 |
+
"speech_rate": (0.8, 1.0) # Faster speech rate
|
655 |
+
},
|
656 |
+
"sad": {
|
657 |
+
"pitch_mean": (100, 220), # Lower pitch for sadness
|
658 |
+
"energy_mean": (0.1, 0.5), # Lower energy
|
659 |
+
"speech_rate": (0.3, 0.7) # Slower speech rate
|
660 |
+
},
|
661 |
+
"angry": {
|
662 |
+
"pitch_mean": (250, 400), # Higher pitch for anger
|
663 |
+
"energy_mean": (0.7, 1.0), # Higher energy
|
664 |
+
"speech_rate": (0.7, 1.0) # Faster speech rate
|
665 |
+
},
|
666 |
+
"fearful": {
|
667 |
+
"pitch_mean": (200, 350), # Higher pitch
|
668 |
+
"energy_mean": (0.4, 0.8), # Medium energy
|
669 |
+
"speech_rate": (0.6, 0.9) # Medium-fast speech rate
|
670 |
+
},
|
671 |
+
"neutral": {
|
672 |
+
"pitch_mean": (180, 240), # Medium pitch
|
673 |
+
"energy_mean": (0.3, 0.6), # Medium energy
|
674 |
+
"speech_rate": (0.4, 0.7) # Medium speech rate
|
675 |
+
}
|
676 |
+
}
|
677 |
+
|
678 |
+
def extract_key_features(self, audio_path):
|
679 |
+
"""Extract key acoustic features for rule-based classification"""
|
680 |
+
try:
|
681 |
+
y, sr = librosa.load(audio_path, sr=22050)
|
682 |
+
|
683 |
+
# Extract pitch
|
684 |
+
pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
|
685 |
+
pitch_mean = np.mean(pitches[magnitudes > 0.1]) if np.any(magnitudes > 0.1) else 200
|
686 |
+
|
687 |
+
# Normalize pitch to 0-1 range (assuming human pitch range 80-400 Hz)
|
688 |
+
pitch_mean_norm = (pitch_mean - 80) / (400 - 80)
|
689 |
+
pitch_mean_norm = max(0, min(1, pitch_mean_norm))
|
690 |
+
|
691 |
+
# Extract energy
|
692 |
+
rms = librosa.feature.rms(y=y)[0]
|
693 |
+
energy_mean = np.mean(rms)
|
694 |
+
|
695 |
+
# Normalize energy
|
696 |
+
energy_mean_norm = energy_mean / 0.1 # Assuming 0.1 is a reasonable max RMS
|
697 |
+
energy_mean_norm = max(0, min(1, energy_mean_norm))
|
698 |
+
|
699 |
+
# Estimate speech rate from onsets
|
700 |
+
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
|
701 |
+
onsets = librosa.onset.onset_detect(onset_envelope=onset_env, sr=sr)
|
702 |
+
if len(onsets) > 1:
|
703 |
+
speech_rate = len(onsets) / (len(y) / sr) # Onsets per second
|
704 |
+
speech_rate_norm = min(1.0, speech_rate / 5.0) # Normalize, assuming 5 onsets/sec is fast
|
705 |
+
else:
|
706 |
+
speech_rate_norm = 0.5 # Default to medium if can't detect
|
707 |
+
|
708 |
+
return {
|
709 |
+
"pitch_mean": pitch_mean_norm,
|
710 |
+
"energy_mean": energy_mean_norm,
|
711 |
+
"speech_rate": speech_rate_norm
|
712 |
+
}
|
713 |
+
|
714 |
+
except Exception as e:
|
715 |
+
print(f"Error extracting key features: {e}")
|
716 |
+
return {
|
717 |
+
"pitch_mean": 0.5, # Default to medium values
|
718 |
+
"energy_mean": 0.5,
|
719 |
+
"speech_rate": 0.5
|
720 |
+
}
|
721 |
+
|
722 |
+
def predict(self, audio_path):
|
723 |
+
"""Predict emotion based on acoustic features"""
|
724 |
+
# Extract key features
|
725 |
+
features = self.extract_key_features(audio_path)
|
726 |
+
|
727 |
+
# Calculate match scores for each emotion
|
728 |
+
emotion_scores = {}
|
729 |
+
for emotion, thresholds in self.feature_thresholds.items():
|
730 |
+
score = 0
|
731 |
+
for feature, (min_val, max_val) in thresholds.items():
|
732 |
+
# Normalize threshold to 0-1 range
|
733 |
+
min_norm = (min_val - 80) / (400 - 80) if feature == "pitch_mean" else min_val
|
734 |
+
max_norm = (max_val - 80) / (400 - 80) if feature == "pitch_mean" else max_val
|
735 |
+
|
736 |
+
# Check if feature is in the emotion's range
|
737 |
+
if min_norm <= features[feature] <= max_norm:
|
738 |
+
# Higher score if closer to the middle of the range
|
739 |
+
middle = (min_norm + max_norm) / 2
|
740 |
+
distance = abs(features[feature] - middle) / ((max_norm - min_norm) / 2)
|
741 |
+
feature_score = 1 - distance
|
742 |
+
score += feature_score
|
743 |
+
else:
|
744 |
+
# Penalty for being outside the range
|
745 |
+
score -= 0.5
|
746 |
+
|
747 |
+
emotion_scores[emotion] = max(0, score)
|
748 |
+
|
749 |
+
# Add small values for other emotions not in our basic set
|
750 |
+
for emotion in EMOTIONS:
|
751 |
+
if emotion not in emotion_scores:
|
752 |
+
emotion_scores[emotion] = 0.1
|
753 |
+
|
754 |
+
# Normalize scores to probabilities
|
755 |
+
total = sum(emotion_scores.values())
|
756 |
+
if total > 0:
|
757 |
+
probs = {emotion: score/total for emotion, score in emotion_scores.items()}
|
758 |
+
else:
|
759 |
+
# Default to neutral if all scores are 0
|
760 |
+
probs = {emotion: 0.1 for emotion in EMOTIONS}
|
761 |
+
probs["neutral"] = 0.5
|
762 |
+
|
763 |
+
# Convert to array in the same order as EMOTIONS
|
764 |
+
return np.array([probs[emotion] for emotion in EMOTIONS])
|
765 |
+
|
766 |
+
|
767 |
+
|
768 |
+
|
769 |
+
# Part 9: Improved Fusion Model for combining text and acoustic predictions
|
770 |
+
class AdaptiveModalityFusionModel(nn.Module):
|
771 |
+
def __init__(self, text_dim, acoustic_dim, hidden_dim=128, num_classes=len(EMOTIONS)):
|
772 |
+
super().__init__()
|
773 |
+
|
774 |
+
# Confidence estimators for each modality
|
775 |
+
self.text_confidence = nn.Sequential(
|
776 |
+
nn.Linear(text_dim, hidden_dim),
|
777 |
+
nn.ReLU(),
|
778 |
+
nn.Linear(hidden_dim, 1),
|
779 |
+
nn.Sigmoid()
|
780 |
+
)
|
781 |
+
|
782 |
+
self.acoustic_confidence = nn.Sequential(
|
783 |
+
nn.Linear(acoustic_dim, hidden_dim),
|
784 |
+
nn.ReLU(),
|
785 |
+
nn.Linear(hidden_dim, 1),
|
786 |
+
nn.Sigmoid()
|
787 |
+
)
|
788 |
+
|
789 |
+
# Feature transformation
|
790 |
+
self.text_transform = nn.Linear(text_dim, hidden_dim)
|
791 |
+
self.acoustic_transform = nn.Linear(acoustic_dim, hidden_dim)
|
792 |
+
|
793 |
+
# Final classifier
|
794 |
+
self.classifier = nn.Sequential(
|
795 |
+
nn.Linear(hidden_dim, num_classes),
|
796 |
+
nn.Softmax(dim=1)
|
797 |
+
)
|
798 |
+
|
799 |
+
# Initialize weights
|
800 |
+
self._init_weights()
|
801 |
+
|
802 |
+
def _init_weights(self):
|
803 |
+
for m in self.modules():
|
804 |
+
if isinstance(m, nn.Linear):
|
805 |
+
nn.init.xavier_uniform_(m.weight)
|
806 |
+
if m.bias is not None:
|
807 |
+
nn.init.zeros_(m.bias)
|
808 |
+
|
809 |
+
def forward(self, text_features, acoustic_features):
|
810 |
+
# Estimate confidence for each modality
|
811 |
+
text_conf = self.text_confidence(text_features)
|
812 |
+
acoustic_conf = self.acoustic_confidence(acoustic_features)
|
813 |
+
|
814 |
+
# Normalize confidences to sum to 1
|
815 |
+
total_conf = text_conf + acoustic_conf
|
816 |
+
text_weight = text_conf / total_conf
|
817 |
+
acoustic_weight = acoustic_conf / total_conf
|
818 |
+
|
819 |
+
# Transform features
|
820 |
+
text_transformed = self.text_transform(text_features)
|
821 |
+
acoustic_transformed = self.acoustic_transform(acoustic_features)
|
822 |
+
|
823 |
+
# Weighted combination
|
824 |
+
combined = text_weight * text_transformed + acoustic_weight * acoustic_transformed
|
825 |
+
|
826 |
+
# Classification
|
827 |
+
output = self.classifier(combined)
|
828 |
+
|
829 |
+
return output
|
830 |
+
|
831 |
+
|
832 |
+
# Part 10: Simple Rule-based Fallback Classifier
|
833 |
+
class RuleBasedClassifier:
|
834 |
+
"""A simple rule-based classifier for fallback when models fail"""
|
835 |
+
|
836 |
+
def predict(self, text):
|
837 |
+
"""Predict emotion based on simple word matching"""
|
838 |
+
text = text.lower()
|
839 |
+
|
840 |
+
# Simple emotion keywords
|
841 |
+
emotion_keywords = {
|
842 |
+
"happy": ["happy", "joy", "delight", "excited", "glad", "pleased", "cheerful", "smile"],
|
843 |
+
"sad": ["sad", "unhappy", "depressed", "sorrow", "grief", "tearful", "miserable"],
|
844 |
+
"angry": ["angry", "mad", "furious", "annoyed", "irritated", "enraged", "livid"],
|
845 |
+
"fearful": ["afraid", "scared", "frightened", "fear", "terror", "panic", "horrified"],
|
846 |
+
"disgust": ["disgust", "gross", "repulsed", "revolted", "sick", "nauseous"],
|
847 |
+
"surprised": ["surprised", "shocked", "astonished", "amazed", "startled"],
|
848 |
+
"sarcastic": ["yeah right", "sure thing", "oh great", "wow", "really", "obviously"]
|
849 |
+
}
|
850 |
+
|
851 |
+
# Count matches for each emotion
|
852 |
+
emotion_scores = {emotion: 0 for emotion in EMOTIONS}
|
853 |
+
emotion_scores["neutral"] = 1 # Default to neutral
|
854 |
+
|
855 |
+
for emotion, keywords in emotion_keywords.items():
|
856 |
+
for keyword in keywords:
|
857 |
+
if keyword in text:
|
858 |
+
emotion_scores[emotion] += 1
|
859 |
+
|
860 |
+
# Return the emotion with highest score
|
861 |
+
max_emotion = max(emotion_scores, key=emotion_scores.get)
|
862 |
+
|
863 |
+
# Convert to probabilities
|
864 |
+
total = sum(emotion_scores.values())
|
865 |
+
probs = {emotion: score/total for emotion, score in emotion_scores.items()}
|
866 |
+
|
867 |
+
return max_emotion, probs
|
868 |
+
|
869 |
+
# Part 11: Complete Emotion Recognition Pipeline with Comprehensive Error Handling
|
870 |
+
class EmotionRecognitionPipeline:
|
871 |
+
def __init__(self, acoustic_model_path=None, fusion_model_path=None):
|
872 |
+
try:
|
873 |
+
print("Initializing Improved Emotion Recognition Pipeline...")
|
874 |
+
|
875 |
+
# Initialize transcriber
|
876 |
+
self.transcriber = WhisperTranscriber()
|
877 |
+
|
878 |
+
# Initialize text classifier
|
879 |
+
self.text_classifier = TextEmotionClassifier()
|
880 |
+
|
881 |
+
# Initialize feature extractor with improved features
|
882 |
+
self.feature_extractor = AcousticFeatureExtractor()
|
883 |
+
|
884 |
+
# Initialize rule-based audio classifier as fallback
|
885 |
+
self.rule_based_audio = PretrainedAudioClassifier()
|
886 |
+
|
887 |
+
# Initialize simple rule-based fallback
|
888 |
+
self.rule_based = RuleBasedClassifier()
|
889 |
+
|
890 |
+
# Define simple fusion strategy
|
891 |
+
self.use_adaptive_fusion = False
|
892 |
+
|
893 |
+
print("Improved Emotion Recognition Pipeline initialized successfully")
|
894 |
+
except Exception as e:
|
895 |
+
print(f"Error initializing pipeline: {e}")
|
896 |
+
print("Some functionality may be limited")
|
897 |
+
|
898 |
+
def predict(self, audio_path):
|
899 |
+
results = {
|
900 |
+
"transcription": "",
|
901 |
+
"text_emotions": {emotion: 0.0 for emotion in EMOTIONS},
|
902 |
+
"acoustic_emotions": {emotion: 0.0 for emotion in EMOTIONS},
|
903 |
+
"final_emotions": {emotion: 0.0 for emotion in EMOTIONS},
|
904 |
+
"predicted_emotion": "neutral",
|
905 |
+
"is_sarcastic": False,
|
906 |
+
"errors": []
|
907 |
+
}
|
908 |
+
|
909 |
+
# Step 1: Transcribe audio
|
910 |
+
try:
|
911 |
+
transcription = self.transcriber.transcribe(audio_path)
|
912 |
+
results["transcription"] = transcription
|
913 |
+
print(f"Transcription: {transcription}")
|
914 |
+
except Exception as e:
|
915 |
+
error_msg = f"Failed to transcribe audio: {e}"
|
916 |
+
print(error_msg)
|
917 |
+
results["errors"].append(error_msg)
|
918 |
+
results["transcription"] = "Error: Could not transcribe audio"
|
919 |
+
|
920 |
+
# Step 2: Analyze text emotions
|
921 |
+
try:
|
922 |
+
if results["transcription"].startswith("Error:"):
|
923 |
+
# Skip text analysis if transcription failed
|
924 |
+
text_emotions = np.ones(len(EMOTIONS)) / len(EMOTIONS) # Equal probabilities
|
925 |
+
sarcasm_indicators = np.array([0.33, 0.33, 0.33])
|
926 |
+
|
927 |
+
# Try rule-based as fallback
|
928 |
+
rule_emotion, rule_probs = self.rule_based.predict(results["transcription"])
|
929 |
+
results["text_emotions"] = rule_probs
|
930 |
+
else:
|
931 |
+
text_emotions = self.text_classifier.predict_emotion(results["transcription"])
|
932 |
+
sarcasm_indicators = self.text_classifier.detect_sarcasm(results["transcription"])
|
933 |
+
|
934 |
+
# Format text emotions result
|
935 |
+
results["text_emotions"] = {EMOTIONS[i]: float(text_emotions[i])
|
936 |
+
for i in range(min(len(text_emotions), len(EMOTIONS)))}
|
937 |
+
|
938 |
+
print(f"Text-based emotions: {results['text_emotions']}")
|
939 |
+
except Exception as e:
|
940 |
+
error_msg = f"Failed to analyze text emotions: {e}"
|
941 |
+
print(error_msg)
|
942 |
+
results["errors"].append(error_msg)
|
943 |
+
|
944 |
+
# Use equal probabilities as fallback
|
945 |
+
results["text_emotions"] = {emotion: 1.0/len(EMOTIONS) for emotion in EMOTIONS}
|
946 |
+
|
947 |
+
# Step 3: Use rule-based audio classifier instead of the untrained model
|
948 |
+
try:
|
949 |
+
# Get predictions from rule-based classifier
|
950 |
+
audio_probs = self.rule_based_audio.predict(audio_path)
|
951 |
+
|
952 |
+
# Format acoustic emotions result
|
953 |
+
results["acoustic_emotions"] = {EMOTIONS[i]: float(audio_probs[i])
|
954 |
+
for i in range(min(len(audio_probs), len(EMOTIONS)))}
|
955 |
+
|
956 |
+
print(f"Acoustic-based emotions: {results['acoustic_emotions']}")
|
957 |
+
except Exception as e:
|
958 |
+
error_msg = f"Failed to predict acoustic emotions: {e}"
|
959 |
+
print(error_msg)
|
960 |
+
results["errors"].append(error_msg)
|
961 |
+
|
962 |
+
# Use equal probabilities as fallback
|
963 |
+
results["acoustic_emotions"] = {emotion: 1.0/len(EMOTIONS) for emotion in EMOTIONS}
|
964 |
+
audio_probs = np.ones(len(EMOTIONS)) / len(EMOTIONS)
|
965 |
+
|
966 |
+
# Step 4: Improved fusion strategy - text-biased weighted average
|
967 |
+
try:
|
968 |
+
# Convert dictionaries to arrays
|
969 |
+
text_array = np.array(list(results["text_emotions"].values()))
|
970 |
+
audio_array = np.array(list(results["acoustic_emotions"].values()))
|
971 |
+
|
972 |
+
# Calculate confidence scores
|
973 |
+
text_confidence = 1.0 - np.std(text_array) # Higher confidence if distribution is more certain
|
974 |
+
audio_confidence = 1.0 - np.std(audio_array)
|
975 |
+
|
976 |
+
# Bias toward text model since it's working better
|
977 |
+
text_confidence *= 1.5 # Increase text confidence
|
978 |
+
|
979 |
+
# Normalize confidences
|
980 |
+
total_confidence = text_confidence + audio_confidence
|
981 |
+
text_weight = text_confidence / total_confidence
|
982 |
+
audio_weight = audio_confidence / total_confidence
|
983 |
+
|
984 |
+
# Weighted average
|
985 |
+
final_probs = (text_weight * text_array) + (audio_weight * audio_array)
|
986 |
+
|
987 |
+
# Format final emotions
|
988 |
+
results["final_emotions"] = {EMOTIONS[i]: float(final_probs[i])
|
989 |
+
for i in range(len(EMOTIONS))}
|
990 |
+
|
991 |
+
print(f"Fusion weights: Text={text_weight:.2f}, Audio={audio_weight:.2f}")
|
992 |
+
except Exception as e:
|
993 |
+
error_msg = f"Failed to fuse predictions: {e}"
|
994 |
+
print(error_msg)
|
995 |
+
results["errors"].append(error_msg)
|
996 |
+
|
997 |
+
# Fallback to text-only predictions since they're more reliable
|
998 |
+
results["final_emotions"] = results["text_emotions"]
|
999 |
+
|
1000 |
+
# Get predicted emotion
|
1001 |
+
try:
|
1002 |
+
emotion_values = list(results["final_emotions"].values())
|
1003 |
+
emotion_idx = np.argmax(emotion_values)
|
1004 |
+
predicted_emotion = EMOTIONS[emotion_idx]
|
1005 |
+
results["predicted_emotion"] = predicted_emotion
|
1006 |
+
|
1007 |
+
# Check for sarcasm
|
1008 |
+
is_sarcastic = False
|
1009 |
+
if hasattr(sarcasm_indicators, "__len__") and len(sarcasm_indicators) > 0:
|
1010 |
+
if predicted_emotion in ["happy", "neutral"] and np.argmax(sarcasm_indicators) == 0:
|
1011 |
+
is_sarcastic = True
|
1012 |
+
results["predicted_emotion"] = "sarcastic"
|
1013 |
+
|
1014 |
+
results["is_sarcastic"] = is_sarcastic
|
1015 |
+
except Exception as e:
|
1016 |
+
error_msg = f"Failed to determine final emotion: {e}"
|
1017 |
+
print(error_msg)
|
1018 |
+
results["errors"].append(error_msg)
|
1019 |
+
results["predicted_emotion"] = "neutral" # Default fallback
|
1020 |
+
|
1021 |
+
return results
|
1022 |
+
|
1023 |
+
|
1024 |
+
# Part 12: Example on sample audio (with better error handling)
|
1025 |
+
def demo_on_sample_audio(pipeline, audio_path):
|
1026 |
+
if not os.path.exists(audio_path):
|
1027 |
+
print(f"Error: Audio file not found at {audio_path}")
|
1028 |
+
return
|
1029 |
+
|
1030 |
+
print(f"Analyzing audio file: {audio_path}")
|
1031 |
+
|
1032 |
+
try:
|
1033 |
+
# Predict emotion from audio
|
1034 |
+
result = pipeline.predict(audio_path)
|
1035 |
+
|
1036 |
+
# Print results
|
1037 |
+
print("\n===== EMOTION ANALYSIS RESULTS =====")
|
1038 |
+
print(f"Transcription: {result['transcription']}")
|
1039 |
+
print(f"\nPredicted Emotion: {result['predicted_emotion'].upper()}")
|
1040 |
+
print(f"Is Sarcastic: {'Yes' if result['is_sarcastic'] else 'No'}")
|
1041 |
+
|
1042 |
+
print("\nText-based Emotions:")
|
1043 |
+
for emotion, score in result['text_emotions'].items():
|
1044 |
+
print(f" {emotion}: {score:.4f}")
|
1045 |
+
|
1046 |
+
print("\nAcoustic-based Emotions:")
|
1047 |
+
for emotion, score in result['acoustic_emotions'].items():
|
1048 |
+
print(f" {emotion}: {score:.4f}")
|
1049 |
+
|
1050 |
+
print("\nFinal Fusion Emotions:")
|
1051 |
+
for emotion, score in result['final_emotions'].items():
|
1052 |
+
print(f" {emotion}: {score:.4f}")
|
1053 |
+
|
1054 |
+
if 'errors' in result and result['errors']:
|
1055 |
+
print("\nErrors encountered:")
|
1056 |
+
for error in result['errors']:
|
1057 |
+
print(f" - {error}")
|
1058 |
+
|
1059 |
+
# Plot results for visualization
|
1060 |
+
try:
|
1061 |
+
emotions = list(result['text_emotions'].keys())
|
1062 |
+
text_scores = list(result['text_emotions'].values())
|
1063 |
+
acoustic_scores = list(result['acoustic_emotions'].values())
|
1064 |
+
final_scores = list(result['final_emotions'].values())
|
1065 |
+
|
1066 |
+
plt.figure(figsize=(12, 6))
|
1067 |
+
|
1068 |
+
x = np.arange(len(emotions))
|
1069 |
+
width = 0.25
|
1070 |
+
|
1071 |
+
plt.bar(x - width, text_scores, width, label='Text')
|
1072 |
+
plt.bar(x, acoustic_scores, width, label='Acoustic')
|
1073 |
+
plt.bar(x + width, final_scores, width, label='Final')
|
1074 |
+
|
1075 |
+
plt.xlabel('Emotions')
|
1076 |
+
plt.ylabel('Probability')
|
1077 |
+
plt.title('Emotion Prediction Results')
|
1078 |
+
plt.xticks(x, emotions, rotation=45)
|
1079 |
+
plt.legend()
|
1080 |
+
|
1081 |
+
plt.tight_layout()
|
1082 |
+
plt.show()
|
1083 |
+
except Exception as e:
|
1084 |
+
print(f"Error creating visualization: {e}")
|
1085 |
+
|
1086 |
+
except Exception as e:
|
1087 |
+
print(f"Error in demo: {e}")
|
1088 |
+
|
1089 |
+
# Part 13: Simplified dataset loading for RAVDESS dataset
|
1090 |
+
def load_ravdess_sample():
|
1091 |
+
"""
|
1092 |
+
Download a small sample from RAVDESS dataset for testing
|
1093 |
+
"""
|
1094 |
+
# Create directory for sample data
|
1095 |
+
sample_dir = "./sample_data"
|
1096 |
+
os.makedirs(sample_dir, exist_ok=True)
|
1097 |
+
|
1098 |
+
# Try to download a sample file
|
1099 |
+
try:
|
1100 |
+
import urllib.request
|
1101 |
+
|
1102 |
+
# Example file from RAVDESS dataset (happy emotion)
|
1103 |
+
url = "https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24/Actor_01/03-01-01-01-01-01-01.wav"
|
1104 |
+
sample_path = os.path.join(sample_dir, "sample_happy.wav")
|
1105 |
+
|
1106 |
+
if not os.path.exists(sample_path):
|
1107 |
+
print(f"Downloading sample audio file from RAVDESS dataset...")
|
1108 |
+
urllib.request.urlretrieve(url, sample_path)
|
1109 |
+
print(f"Downloaded sample to {sample_path}")
|
1110 |
+
else:
|
1111 |
+
print(f"Sample file already exists at {sample_path}")
|
1112 |
+
|
1113 |
+
return sample_path
|
1114 |
+
except Exception as e:
|
1115 |
+
print(f"Error downloading RAVDESS sample: {e}")
|
1116 |
+
return None
|
1117 |
+
|
1118 |
+
# Part 14: Simplified main function with proper error handling
|
1119 |
+
def main():
|
1120 |
+
print("Starting Tone Classification System...")
|
1121 |
+
|
1122 |
+
try:
|
1123 |
+
# Create the pipeline
|
1124 |
+
pipeline = EmotionRecognitionPipeline()
|
1125 |
+
|
1126 |
+
# Try to load a sample file
|
1127 |
+
sample_audio_path = load_ravdess_sample()
|
1128 |
+
|
1129 |
+
if sample_audio_path and os.path.exists(sample_audio_path):
|
1130 |
+
demo_on_sample_audio(pipeline, sample_audio_path)
|
1131 |
+
else:
|
1132 |
+
print("\nNo sample audio file available.")
|
1133 |
+
print("To use the system, provide an audio file path when calling the demo_on_sample_audio function:")
|
1134 |
+
print("\ndemo_on_sample_audio(pipeline, '/path/to/your/audio.wav')")
|
1135 |
+
|
1136 |
+
except Exception as e:
|
1137 |
+
print(f"Error in main execution: {e}")
|
1138 |
+
print("\nTroubleshooting tips:")
|
1139 |
+
print("1. Check if your audio file exists and is in a supported format (WAV recommended)")
|
1140 |
+
print("2. Ensure you have sufficient memory for model loading")
|
1141 |
+
print("3. Try with a smaller model size in WhisperTranscriber (tiny instead of base)")
|
1142 |
+
print("4. Make sure you have stable internet connection for model downloading")
|
1143 |
+
|
1144 |
+
if __name__ == "__main__":
|
1145 |
+
main()
|
1146 |
+
|
1147 |
+
|
1148 |
+
# Add this after the main() function definition but before the if __name__ == "__main__": line
|
1149 |
+
def upload_and_analyze():
|
1150 |
+
from IPython.display import display
|
1151 |
+
import ipywidgets as widgets
|
1152 |
+
|
1153 |
+
# Create upload widget
|
1154 |
+
upload_widget = widgets.FileUpload(
|
1155 |
+
accept='.wav, .mp3',
|
1156 |
+
multiple=False,
|
1157 |
+
description='Upload Audio File',
|
1158 |
+
button_style='primary'
|
1159 |
+
)
|
1160 |
+
display(upload_widget)
|
1161 |
+
|
1162 |
+
# Create button to trigger analysis
|
1163 |
+
analyze_button = widgets.Button(description='Analyze Audio')
|
1164 |
+
display(analyze_button)
|
1165 |
+
|
1166 |
+
# Create output area for results
|
1167 |
+
output = widgets.Output()
|
1168 |
+
display(output)
|
1169 |
+
|
1170 |
+
def on_analyze_click(b):
|
1171 |
+
with output:
|
1172 |
+
output.clear_output()
|
1173 |
+
if not upload_widget.value:
|
1174 |
+
print("Please upload an audio file first.")
|
1175 |
+
return
|
1176 |
+
|
1177 |
+
# Get the uploaded file
|
1178 |
+
file_data = next(iter(upload_widget.value.values()))
|
1179 |
+
file_name = next(iter(upload_widget.value.keys()))
|
1180 |
+
|
1181 |
+
# Save to temp file
|
1182 |
+
temp_file = f"./temp_{file_name}"
|
1183 |
+
with open(temp_file, 'wb') as f:
|
1184 |
+
f.write(file_data['content'])
|
1185 |
+
|
1186 |
+
print(f"Analyzing uploaded file: {file_name}")
|
1187 |
+
|
1188 |
+
# Create pipeline and analyze
|
1189 |
+
pipeline = EmotionRecognitionPipeline()
|
1190 |
+
demo_on_sample_audio(pipeline, temp_file)
|
1191 |
+
|
1192 |
+
analyze_button.on_click(on_analyze_click)
|
1193 |
+
|
1194 |
+
# Then modify the if __name__ == "__main__": section
|
1195 |
+
if __name__ == "__main__":
|
1196 |
+
try:
|
1197 |
+
import ipywidgets
|
1198 |
+
# If ipywidgets is available, we're in a notebook
|
1199 |
+
print("Running in notebook mode - use the upload widget below:")
|
1200 |
+
upload_and_analyze()
|
1201 |
+
except ImportError:
|
1202 |
+
# Otherwise, run the standard main function
|
1203 |
+
main()
|
1204 |
+
|
1205 |
+
|
1206 |
+
import os
|
1207 |
+
import numpy as np
|
1208 |
+
import torch
|
1209 |
+
import matplotlib.pyplot as plt
|
1210 |
+
import gradio as gr
|
1211 |
+
from io import BytesIO
|
1212 |
+
|
1213 |
+
# Use the existing EmotionRecognitionPipeline class from your code
|
1214 |
+
|
1215 |
+
def analyze_audio(audio_path):
|
1216 |
+
"""
|
1217 |
+
Analyze an audio file and return the emotion recognition results
|
1218 |
+
"""
|
1219 |
+
if audio_path is None:
|
1220 |
+
return "Please provide an audio file.", None, None
|
1221 |
+
|
1222 |
+
try:
|
1223 |
+
# Create the pipeline
|
1224 |
+
pipeline = EmotionRecognitionPipeline()
|
1225 |
+
|
1226 |
+
# Predict emotion from audio
|
1227 |
+
result = pipeline.predict(audio_path)
|
1228 |
+
|
1229 |
+
# Format the results for display
|
1230 |
+
transcription = result['transcription']
|
1231 |
+
predicted_emotion = result['predicted_emotion'].upper()
|
1232 |
+
is_sarcastic = 'Yes' if result['is_sarcastic'] else 'No'
|
1233 |
+
|
1234 |
+
# Create text summary
|
1235 |
+
summary = f"Transcription: {transcription}\n\n"
|
1236 |
+
summary += f"Predicted Emotion: {predicted_emotion}\n"
|
1237 |
+
summary += f"Is Sarcastic: {is_sarcastic}\n\n"
|
1238 |
+
|
1239 |
+
summary += "Text-based Emotions:\n"
|
1240 |
+
for emotion, score in result['text_emotions'].items():
|
1241 |
+
summary += f" {emotion}: {score:.4f}\n"
|
1242 |
+
|
1243 |
+
summary += "\nAcoustic-based Emotions:\n"
|
1244 |
+
for emotion, score in result['acoustic_emotions'].items():
|
1245 |
+
summary += f" {emotion}: {score:.4f}\n"
|
1246 |
+
|
1247 |
+
summary += "\nFinal Fusion Emotions:\n"
|
1248 |
+
for emotion, score in result['final_emotions'].items():
|
1249 |
+
summary += f" {emotion}: {score:.4f}\n"
|
1250 |
+
|
1251 |
+
if 'errors' in result and result['errors']:
|
1252 |
+
summary += "\nErrors encountered:\n"
|
1253 |
+
for error in result['errors']:
|
1254 |
+
summary += f" - {error}\n"
|
1255 |
+
|
1256 |
+
# Create visualization
|
1257 |
+
fig = create_emotion_plot(result)
|
1258 |
+
|
1259 |
+
return summary, fig, result['predicted_emotion']
|
1260 |
+
except Exception as e:
|
1261 |
+
return f"Error analyzing audio: {str(e)}", None, "error"
|
1262 |
+
|
1263 |
+
def create_emotion_plot(result):
|
1264 |
+
"""
|
1265 |
+
Create a visualization of the emotion recognition results
|
1266 |
+
"""
|
1267 |
+
emotions = list(result['text_emotions'].keys())
|
1268 |
+
text_scores = list(result['text_emotions'].values())
|
1269 |
+
acoustic_scores = list(result['acoustic_emotions'].values())
|
1270 |
+
final_scores = list(result['final_emotions'].values())
|
1271 |
+
|
1272 |
+
fig = plt.figure(figsize=(10, 6))
|
1273 |
+
|
1274 |
+
x = np.arange(len(emotions))
|
1275 |
+
width = 0.25
|
1276 |
+
|
1277 |
+
plt.bar(x - width, text_scores, width, label='Text')
|
1278 |
+
plt.bar(x, acoustic_scores, width, label='Acoustic')
|
1279 |
+
plt.bar(x + width, final_scores, width, label='Final')
|
1280 |
+
|
1281 |
+
plt.xlabel('Emotions')
|
1282 |
+
plt.ylabel('Probability')
|
1283 |
+
plt.title('Emotion Recognition Results')
|
1284 |
+
plt.xticks(x, emotions, rotation=45)
|
1285 |
+
plt.legend()
|
1286 |
+
plt.tight_layout()
|
1287 |
+
|
1288 |
+
return fig
|
1289 |
+
|
1290 |
+
# Create the Gradio interface with tabs for microphone and file upload
|
1291 |
+
def create_gradio_interface():
|
1292 |
+
with gr.Blocks(title="Tone Classification System") as demo:
|
1293 |
+
gr.Markdown("# Tone Classification System")
|
1294 |
+
gr.Markdown("This system analyzes audio to detect emotions, including sarcasm and figures of speech.")
|
1295 |
+
|
1296 |
+
with gr.Tabs():
|
1297 |
+
with gr.TabItem("Microphone Input"):
|
1298 |
+
with gr.Row():
|
1299 |
+
with gr.Column():
|
1300 |
+
audio_input = gr.Audio(
|
1301 |
+
sources=["microphone"],
|
1302 |
+
type="filepath",
|
1303 |
+
label="Record your voice"
|
1304 |
+
)
|
1305 |
+
analyze_btn = gr.Button("Analyze Recording", variant="primary")
|
1306 |
+
|
1307 |
+
with gr.Column():
|
1308 |
+
result_text = gr.Textbox(label="Analysis Results", lines=15)
|
1309 |
+
emotion_plot = gr.Plot(label="Emotion Probabilities")
|
1310 |
+
emotion_label = gr.Label(label="Detected Emotion")
|
1311 |
+
|
1312 |
+
analyze_btn.click(
|
1313 |
+
fn=analyze_audio,
|
1314 |
+
inputs=audio_input,
|
1315 |
+
outputs=[result_text, emotion_plot, emotion_label]
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
with gr.TabItem("File Upload"):
|
1319 |
+
with gr.Row():
|
1320 |
+
with gr.Column():
|
1321 |
+
file_input = gr.Audio(
|
1322 |
+
sources=["upload"],
|
1323 |
+
type="filepath",
|
1324 |
+
label="Upload audio file (.wav, .mp3)"
|
1325 |
+
)
|
1326 |
+
file_analyze_btn = gr.Button("Analyze File", variant="primary")
|
1327 |
+
|
1328 |
+
with gr.Column():
|
1329 |
+
file_result_text = gr.Textbox(label="Analysis Results", lines=15)
|
1330 |
+
file_emotion_plot = gr.Plot(label="Emotion Probabilities")
|
1331 |
+
file_emotion_label = gr.Label(label="Detected Emotion")
|
1332 |
+
|
1333 |
+
file_analyze_btn.click(
|
1334 |
+
fn=analyze_audio,
|
1335 |
+
inputs=file_input,
|
1336 |
+
outputs=[file_result_text, file_emotion_plot, file_emotion_label]
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
gr.Markdown("## How to Use")
|
1340 |
+
gr.Markdown("""
|
1341 |
+
1. **Microphone Input**: Record your voice and click 'Analyze Recording'
|
1342 |
+
2. **File Upload**: Upload an audio file (.wav or .mp3) and click 'Analyze File'
|
1343 |
+
|
1344 |
+
The system will transcribe the speech, analyze emotions from both text and acoustic features,
|
1345 |
+
and display the results with a visualization of emotion probabilities.
|
1346 |
+
""")
|
1347 |
+
|
1348 |
+
gr.Markdown("## About")
|
1349 |
+
gr.Markdown("""
|
1350 |
+
This tone classification system combines text and acoustic features to detect emotions in speech.
|
1351 |
+
It uses a multi-modal approach with:
|
1352 |
+
|
1353 |
+
- Speech-to-text transcription
|
1354 |
+
- Text-based emotion analysis
|
1355 |
+
- Acoustic feature extraction
|
1356 |
+
- Fusion of both modalities for final prediction
|
1357 |
+
|
1358 |
+
The system can detect: neutral, happy, sad, angry, fearful, disgust, surprised, and sarcastic tones.
|
1359 |
+
""")
|
1360 |
+
|
1361 |
+
return demo
|
1362 |
+
|
1363 |
+
# Main function to launch the Gradio interface
|
1364 |
+
def main():
|
1365 |
+
demo = create_gradio_interface()
|
1366 |
+
demo.launch()
|
1367 |
+
|
1368 |
+
if __name__ == "__main__":
|
1369 |
+
main()
|