Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,892 Bytes
4e19c9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
#!/usr/bin/env python3
"""
Score Utilizer - Extract and utilize highest-scoring pages from retrieval logs
This module provides utilities to parse log outputs and retrieve the best pages based on scores.
"""
import re
import json
from typing import List, Dict, Tuple, Optional
class ScoreUtilizer:
"""
Utility class to extract and utilize highest-scoring pages from retrieval logs
"""
def __init__(self):
self.score_patterns = {
'page_score': r'Page\s+(\d+)\s+\(doc_id:\s*(\d+)\)\s*\|\s*Score:\s*([\d.]+)',
'highest_scoring': r'(\d+)\.\s*Page\s+(\d+)\s+-\s*Score:\s*([\d.]+)',
'relevance_level': r'([π’π‘π π΅π£π΄])\s+([A-Z\s]+)\s+-\s+(.+)'
}
def parse_log_output(self, log_text: str) -> Dict:
"""
Parse log output to extract page scores and relevance information
Args:
log_text: Raw log output from the retrieval system
Returns:
Dictionary containing parsed page scores and metadata
"""
print("π PARSING LOG OUTPUT FOR HIGHEST-SCORING PAGES")
print("=" * 60)
# Extract page scores
page_scores = self._extract_page_scores(log_text)
# Extract highest scoring pages
top_pages = self._extract_top_pages(log_text)
# Extract relevance distribution
relevance_dist = self._extract_relevance_distribution(log_text)
# Extract statistics
stats = self._extract_statistics(log_text)
result = {
'page_scores': page_scores,
'top_pages': top_pages,
'relevance_distribution': relevance_dist,
'statistics': stats,
'parsed_at': self._get_timestamp()
}
print(f"β
Successfully parsed {len(page_scores)} page scores")
print(f"π Found {len(top_pages)} top-scoring pages")
print("=" * 60)
return result
def _extract_page_scores(self, log_text: str) -> List[Dict]:
"""Extract individual page scores from log text"""
page_scores = []
# Pattern: "Page 1 (doc_id: 0) | Score: 0.9234 | π’ EXCELLENT - Highly relevant"
pattern = self.score_patterns['page_score']
matches = re.findall(pattern, log_text)
for match in matches:
page_num, doc_id, score = match
page_scores.append({
'page_number': int(page_num),
'doc_id': int(doc_id),
'score': float(score),
'relevance_level': self._get_relevance_level(float(score))
})
# Sort by score (highest first)
page_scores.sort(key=lambda x: x['score'], reverse=True)
return page_scores
def _extract_top_pages(self, log_text: str) -> List[Dict]:
"""Extract top-scoring pages from log text"""
top_pages = []
# Pattern: "1. Page 1 - Score: 0.9234"
pattern = self.score_patterns['highest_scoring']
matches = re.findall(pattern, log_text)
for match in matches:
rank, page_num, score = match
top_pages.append({
'rank': int(rank),
'page_number': int(page_num),
'score': float(score),
'relevance_level': self._get_relevance_level(float(score))
})
return top_pages
def _extract_relevance_distribution(self, log_text: str) -> Dict:
"""Extract relevance distribution from log text"""
distribution = {
'excellent': 0,
'very_good': 0,
'good': 0,
'moderate': 0,
'basic': 0,
'poor': 0
}
# Look for distribution lines like "π’ Excellent (β₯0.90): 2 pages"
patterns = {
'excellent': r'π’\s+Excellent.*?(\d+)\s+pages?',
'very_good': r'π‘\s+Very Good.*?(\d+)\s+pages?',
'good': r'π \s+Good.*?(\d+)\s+pages?',
'moderate': r'π΅\s+Moderate.*?(\d+)\s+pages?',
'basic': r'π£\s+Basic.*?(\d+)\s+pages?',
'poor': r'π΄\s+Poor.*?(\d+)\s+pages?'
}
for level, pattern in patterns.items():
match = re.search(pattern, log_text)
if match:
distribution[level] = int(match.group(1))
return distribution
def _extract_statistics(self, log_text: str) -> Dict:
"""Extract statistical information from log text"""
stats = {}
# Extract average score
avg_match = re.search(r'Average.*?Score:\s*([\d.]+)', log_text)
if avg_match:
stats['average_score'] = float(avg_match.group(1))
# Extract highest score
high_match = re.search(r'Highest.*?Score:\s*([\d.]+)', log_text)
if high_match:
stats['highest_score'] = float(high_match.group(1))
# Extract lowest score
low_match = re.search(r'Lowest.*?Score:\s*([\d.]+)', log_text)
if low_match:
stats['lowest_score'] = float(low_match.group(1))
# Extract total pages
total_match = re.search(r'Total.*?(\d+).*?results?', log_text)
if total_match:
stats['total_pages'] = int(total_match.group(1))
return stats
def get_highest_scoring_pages(self, parsed_data: Dict, count: int = 5) -> List[Dict]:
"""
Get the highest-scoring pages from parsed data
Args:
parsed_data: Parsed log data from parse_log_output()
count: Number of top pages to return
Returns:
List of highest-scoring pages
"""
if 'page_scores' not in parsed_data:
return []
return parsed_data['page_scores'][:count]
def get_pages_by_threshold(self, parsed_data: Dict, threshold: float = 0.80) -> List[Dict]:
"""
Get pages that meet or exceed a score threshold
Args:
parsed_data: Parsed log data from parse_log_output()
threshold: Minimum score threshold
Returns:
List of pages meeting the threshold
"""
if 'page_scores' not in parsed_data:
return []
return [page for page in parsed_data['page_scores'] if page['score'] >= threshold]
def get_pages_by_relevance_level(self, parsed_data: Dict, level: str = 'excellent') -> List[Dict]:
"""
Get pages by specific relevance level
Args:
parsed_data: Parsed log data from parse_log_output()
level: Relevance level ('excellent', 'very_good', 'good', 'moderate', 'basic', 'poor')
Returns:
List of pages with the specified relevance level
"""
if 'page_scores' not in parsed_data:
return []
level_mapping = {
'excellent': 'π’ EXCELLENT',
'very_good': 'π‘ VERY GOOD',
'good': 'π GOOD',
'moderate': 'π΅ MODERATE',
'basic': 'π£ BASIC',
'poor': 'π΄ POOR'
}
target_level = level_mapping.get(level, 'π’ EXCELLENT')
return [page for page in parsed_data['page_scores'] if target_level in page['relevance_level']]
def generate_utilization_report(self, parsed_data: Dict) -> str:
"""
Generate a comprehensive report on how to utilize the highest-scoring pages
Args:
parsed_data: Parsed log data from parse_log_output()
Returns:
Formatted report string
"""
report = []
report.append("π HIGHEST-SCORING PAGES UTILIZATION REPORT")
report.append("=" * 60)
# Top pages summary
top_pages = self.get_highest_scoring_pages(parsed_data, 5)
report.append(f"\nπ TOP 5 HIGHEST-SCORING PAGES:")
for i, page in enumerate(top_pages, 1):
report.append(f" {i}. Page {page['page_number']} - Score: {page['score']:.4f} ({page['relevance_level']})")
# Threshold-based recommendations
excellent_pages = self.get_pages_by_threshold(parsed_data, 0.90)
very_good_pages = self.get_pages_by_threshold(parsed_data, 0.80)
report.append(f"\nπ― UTILIZATION RECOMMENDATIONS:")
report.append(f" π’ Excellent pages (β₯0.90): {len(excellent_pages)} pages - Use for primary context")
report.append(f" π‘ Very Good pages (β₯0.80): {len(very_good_pages)} pages - Use for comprehensive coverage")
# Statistics
if 'statistics' in parsed_data and parsed_data['statistics']:
stats = parsed_data['statistics']
report.append(f"\nπ QUALITY METRICS:")
if 'average_score' in stats:
report.append(f" Average Score: {stats['average_score']:.4f}")
if 'highest_score' in stats:
report.append(f" Highest Score: {stats['highest_score']:.4f}")
if 'total_pages' in stats:
report.append(f" Total Pages Analyzed: {stats['total_pages']}")
# Usage suggestions
report.append(f"\nπ‘ USAGE SUGGESTIONS:")
report.append(f" 1. Feed top 3 pages to language model for focused responses")
report.append(f" 2. Use excellent pages for critical information extraction")
report.append(f" 3. Include very good pages for comprehensive analysis")
report.append(f" 4. Consider page diversity for balanced coverage")
report.append("=" * 60)
return "\n".join(report)
def _get_relevance_level(self, score: float) -> str:
"""Get relevance level based on score"""
if score >= 0.90:
return "π’ EXCELLENT - Highly relevant"
elif score >= 0.80:
return "π‘ VERY GOOD - Very relevant"
elif score >= 0.70:
return "π GOOD - Relevant"
elif score >= 0.60:
return "π΅ MODERATE - Somewhat relevant"
elif score >= 0.50:
return "π£ BASIC - Minimally relevant"
else:
return "π΄ POOR - Not relevant"
def _get_timestamp(self) -> str:
"""Get current timestamp"""
from datetime import datetime
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Example usage function
def demonstrate_score_utilization():
"""
Demonstrate how to use the ScoreUtilizer to extract and utilize highest-scoring pages
"""
print("π§ͺ DEMONSTRATING SCORE UTILIZATION")
print("=" * 60)
# Example log output (this would come from your actual retrieval system)
example_log = """
================================================================================
π RETRIEVAL SCORES - PAGE NUMBERS WITH HIGHEST SCORES
================================================================================
π Collection: documents_20250101_120000
π Total documents found: 15
π― Requested top-k: 5
--------------------------------------------------------------------------------
π Page 1 (doc_id: 0) | Score: 0.9234 | π’ EXCELLENT - Highly relevant
π Page 3 (doc_id: 2) | Score: 0.8756 | π‘ VERY GOOD - Very relevant
π Page 7 (doc_id: 6) | Score: 0.8123 | π‘ VERY GOOD - Very relevant
π Page 2 (doc_id: 1) | Score: 0.7890 | π GOOD - Relevant
π Page 5 (doc_id: 4) | Score: 0.7456 | π GOOD - Relevant
--------------------------------------------------------------------------------
π HIGHEST SCORING PAGES:
1. Page 1 - Score: 0.9234
2. Page 3 - Score: 0.8756
3. Page 7 - Score: 0.8123
================================================================================
"""
# Initialize utilizer
utilizer = ScoreUtilizer()
# Parse the log output
parsed_data = utilizer.parse_log_output(example_log)
# Get highest-scoring pages
top_pages = utilizer.get_highest_scoring_pages(parsed_data, 3)
print(f"\nπ TOP 3 HIGHEST-SCORING PAGES:")
for page in top_pages:
print(f" Page {page['page_number']} - Score: {page['score']:.4f}")
# Get pages by threshold
excellent_pages = utilizer.get_pages_by_threshold(parsed_data, 0.90)
print(f"\nπ’ EXCELLENT PAGES (β₯0.90): {len(excellent_pages)} pages")
# Generate utilization report
report = utilizer.generate_utilization_report(parsed_data)
print(f"\n{report}")
print("\nβ
Score utilization demonstration completed!")
if __name__ == "__main__":
demonstrate_score_utilization()
|