File size: 12,892 Bytes
4e19c9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#!/usr/bin/env python3
"""
Score Utilizer - Extract and utilize highest-scoring pages from retrieval logs
This module provides utilities to parse log outputs and retrieve the best pages based on scores.
"""

import re
import json
from typing import List, Dict, Tuple, Optional

class ScoreUtilizer:
    """
    Utility class to extract and utilize highest-scoring pages from retrieval logs
    """
    
    def __init__(self):
        self.score_patterns = {
            'page_score': r'Page\s+(\d+)\s+\(doc_id:\s*(\d+)\)\s*\|\s*Score:\s*([\d.]+)',
            'highest_scoring': r'(\d+)\.\s*Page\s+(\d+)\s+-\s*Score:\s*([\d.]+)',
            'relevance_level': r'([πŸŸ’πŸŸ‘πŸŸ πŸ”΅πŸŸ£πŸ”΄])\s+([A-Z\s]+)\s+-\s+(.+)'
        }
    
    def parse_log_output(self, log_text: str) -> Dict:
        """
        Parse log output to extract page scores and relevance information
        
        Args:
            log_text: Raw log output from the retrieval system
            
        Returns:
            Dictionary containing parsed page scores and metadata
        """
        print("πŸ” PARSING LOG OUTPUT FOR HIGHEST-SCORING PAGES")
        print("=" * 60)
        
        # Extract page scores
        page_scores = self._extract_page_scores(log_text)
        
        # Extract highest scoring pages
        top_pages = self._extract_top_pages(log_text)
        
        # Extract relevance distribution
        relevance_dist = self._extract_relevance_distribution(log_text)
        
        # Extract statistics
        stats = self._extract_statistics(log_text)
        
        result = {
            'page_scores': page_scores,
            'top_pages': top_pages,
            'relevance_distribution': relevance_dist,
            'statistics': stats,
            'parsed_at': self._get_timestamp()
        }
        
        print(f"βœ… Successfully parsed {len(page_scores)} page scores")
        print(f"πŸ† Found {len(top_pages)} top-scoring pages")
        print("=" * 60)
        
        return result
    
    def _extract_page_scores(self, log_text: str) -> List[Dict]:
        """Extract individual page scores from log text"""
        page_scores = []
        
        # Pattern: "Page  1 (doc_id:  0) | Score:   0.9234 | 🟒 EXCELLENT - Highly relevant"
        pattern = self.score_patterns['page_score']
        matches = re.findall(pattern, log_text)
        
        for match in matches:
            page_num, doc_id, score = match
            page_scores.append({
                'page_number': int(page_num),
                'doc_id': int(doc_id),
                'score': float(score),
                'relevance_level': self._get_relevance_level(float(score))
            })
        
        # Sort by score (highest first)
        page_scores.sort(key=lambda x: x['score'], reverse=True)
        
        return page_scores
    
    def _extract_top_pages(self, log_text: str) -> List[Dict]:
        """Extract top-scoring pages from log text"""
        top_pages = []
        
        # Pattern: "1. Page 1 - Score: 0.9234"
        pattern = self.score_patterns['highest_scoring']
        matches = re.findall(pattern, log_text)
        
        for match in matches:
            rank, page_num, score = match
            top_pages.append({
                'rank': int(rank),
                'page_number': int(page_num),
                'score': float(score),
                'relevance_level': self._get_relevance_level(float(score))
            })
        
        return top_pages
    
    def _extract_relevance_distribution(self, log_text: str) -> Dict:
        """Extract relevance distribution from log text"""
        distribution = {
            'excellent': 0,
            'very_good': 0,
            'good': 0,
            'moderate': 0,
            'basic': 0,
            'poor': 0
        }
        
        # Look for distribution lines like "🟒 Excellent (β‰₯0.90): 2 pages"
        patterns = {
            'excellent': r'🟒\s+Excellent.*?(\d+)\s+pages?',
            'very_good': r'🟑\s+Very Good.*?(\d+)\s+pages?',
            'good': r'🟠\s+Good.*?(\d+)\s+pages?',
            'moderate': r'πŸ”΅\s+Moderate.*?(\d+)\s+pages?',
            'basic': r'🟣\s+Basic.*?(\d+)\s+pages?',
            'poor': r'πŸ”΄\s+Poor.*?(\d+)\s+pages?'
        }
        
        for level, pattern in patterns.items():
            match = re.search(pattern, log_text)
            if match:
                distribution[level] = int(match.group(1))
        
        return distribution
    
    def _extract_statistics(self, log_text: str) -> Dict:
        """Extract statistical information from log text"""
        stats = {}
        
        # Extract average score
        avg_match = re.search(r'Average.*?Score:\s*([\d.]+)', log_text)
        if avg_match:
            stats['average_score'] = float(avg_match.group(1))
        
        # Extract highest score
        high_match = re.search(r'Highest.*?Score:\s*([\d.]+)', log_text)
        if high_match:
            stats['highest_score'] = float(high_match.group(1))
        
        # Extract lowest score
        low_match = re.search(r'Lowest.*?Score:\s*([\d.]+)', log_text)
        if low_match:
            stats['lowest_score'] = float(low_match.group(1))
        
        # Extract total pages
        total_match = re.search(r'Total.*?(\d+).*?results?', log_text)
        if total_match:
            stats['total_pages'] = int(total_match.group(1))
        
        return stats
    
    def get_highest_scoring_pages(self, parsed_data: Dict, count: int = 5) -> List[Dict]:
        """
        Get the highest-scoring pages from parsed data
        
        Args:
            parsed_data: Parsed log data from parse_log_output()
            count: Number of top pages to return
            
        Returns:
            List of highest-scoring pages
        """
        if 'page_scores' not in parsed_data:
            return []
        
        return parsed_data['page_scores'][:count]
    
    def get_pages_by_threshold(self, parsed_data: Dict, threshold: float = 0.80) -> List[Dict]:
        """
        Get pages that meet or exceed a score threshold
        
        Args:
            parsed_data: Parsed log data from parse_log_output()
            threshold: Minimum score threshold
            
        Returns:
            List of pages meeting the threshold
        """
        if 'page_scores' not in parsed_data:
            return []
        
        return [page for page in parsed_data['page_scores'] if page['score'] >= threshold]
    
    def get_pages_by_relevance_level(self, parsed_data: Dict, level: str = 'excellent') -> List[Dict]:
        """
        Get pages by specific relevance level
        
        Args:
            parsed_data: Parsed log data from parse_log_output()
            level: Relevance level ('excellent', 'very_good', 'good', 'moderate', 'basic', 'poor')
            
        Returns:
            List of pages with the specified relevance level
        """
        if 'page_scores' not in parsed_data:
            return []
        
        level_mapping = {
            'excellent': '🟒 EXCELLENT',
            'very_good': '🟑 VERY GOOD',
            'good': '🟠 GOOD',
            'moderate': 'πŸ”΅ MODERATE',
            'basic': '🟣 BASIC',
            'poor': 'πŸ”΄ POOR'
        }
        
        target_level = level_mapping.get(level, '🟒 EXCELLENT')
        return [page for page in parsed_data['page_scores'] if target_level in page['relevance_level']]
    
    def generate_utilization_report(self, parsed_data: Dict) -> str:
        """
        Generate a comprehensive report on how to utilize the highest-scoring pages
        
        Args:
            parsed_data: Parsed log data from parse_log_output()
            
        Returns:
            Formatted report string
        """
        report = []
        report.append("πŸ“Š HIGHEST-SCORING PAGES UTILIZATION REPORT")
        report.append("=" * 60)
        
        # Top pages summary
        top_pages = self.get_highest_scoring_pages(parsed_data, 5)
        report.append(f"\nπŸ† TOP 5 HIGHEST-SCORING PAGES:")
        for i, page in enumerate(top_pages, 1):
            report.append(f"   {i}. Page {page['page_number']} - Score: {page['score']:.4f} ({page['relevance_level']})")
        
        # Threshold-based recommendations
        excellent_pages = self.get_pages_by_threshold(parsed_data, 0.90)
        very_good_pages = self.get_pages_by_threshold(parsed_data, 0.80)
        
        report.append(f"\n🎯 UTILIZATION RECOMMENDATIONS:")
        report.append(f"   🟒 Excellent pages (β‰₯0.90): {len(excellent_pages)} pages - Use for primary context")
        report.append(f"   🟑 Very Good pages (β‰₯0.80): {len(very_good_pages)} pages - Use for comprehensive coverage")
        
        # Statistics
        if 'statistics' in parsed_data and parsed_data['statistics']:
            stats = parsed_data['statistics']
            report.append(f"\nπŸ“ˆ QUALITY METRICS:")
            if 'average_score' in stats:
                report.append(f"   Average Score: {stats['average_score']:.4f}")
            if 'highest_score' in stats:
                report.append(f"   Highest Score: {stats['highest_score']:.4f}")
            if 'total_pages' in stats:
                report.append(f"   Total Pages Analyzed: {stats['total_pages']}")
        
        # Usage suggestions
        report.append(f"\nπŸ’‘ USAGE SUGGESTIONS:")
        report.append(f"   1. Feed top 3 pages to language model for focused responses")
        report.append(f"   2. Use excellent pages for critical information extraction")
        report.append(f"   3. Include very good pages for comprehensive analysis")
        report.append(f"   4. Consider page diversity for balanced coverage")
        
        report.append("=" * 60)
        
        return "\n".join(report)
    
    def _get_relevance_level(self, score: float) -> str:
        """Get relevance level based on score"""
        if score >= 0.90:
            return "🟒 EXCELLENT - Highly relevant"
        elif score >= 0.80:
            return "🟑 VERY GOOD - Very relevant"
        elif score >= 0.70:
            return "🟠 GOOD - Relevant"
        elif score >= 0.60:
            return "πŸ”΅ MODERATE - Somewhat relevant"
        elif score >= 0.50:
            return "🟣 BASIC - Minimally relevant"
        else:
            return "πŸ”΄ POOR - Not relevant"
    
    def _get_timestamp(self) -> str:
        """Get current timestamp"""
        from datetime import datetime
        return datetime.now().strftime("%Y-%m-%d %H:%M:%S")

# Example usage function
def demonstrate_score_utilization():
    """
    Demonstrate how to use the ScoreUtilizer to extract and utilize highest-scoring pages
    """
    print("πŸ§ͺ DEMONSTRATING SCORE UTILIZATION")
    print("=" * 60)
    
    # Example log output (this would come from your actual retrieval system)
    example_log = """
================================================================================
πŸ“Š RETRIEVAL SCORES - PAGE NUMBERS WITH HIGHEST SCORES
================================================================================
πŸ” Collection: documents_20250101_120000
πŸ“„ Total documents found: 15
🎯 Requested top-k: 5
--------------------------------------------------------------------------------
πŸ“„ Page  1 (doc_id:  0) | Score:   0.9234 | 🟒 EXCELLENT - Highly relevant
πŸ“„ Page  3 (doc_id:  2) | Score:   0.8756 | 🟑 VERY GOOD - Very relevant
πŸ“„ Page  7 (doc_id:  6) | Score:   0.8123 | 🟑 VERY GOOD - Very relevant
πŸ“„ Page  2 (doc_id:  1) | Score:   0.7890 | 🟠 GOOD - Relevant
πŸ“„ Page  5 (doc_id:  4) | Score:   0.7456 | 🟠 GOOD - Relevant
--------------------------------------------------------------------------------
πŸ† HIGHEST SCORING PAGES:
   1. Page 1 - Score: 0.9234
   2. Page 3 - Score: 0.8756
   3. Page 7 - Score: 0.8123
================================================================================
"""
    
    # Initialize utilizer
    utilizer = ScoreUtilizer()
    
    # Parse the log output
    parsed_data = utilizer.parse_log_output(example_log)
    
    # Get highest-scoring pages
    top_pages = utilizer.get_highest_scoring_pages(parsed_data, 3)
    print(f"\nπŸ† TOP 3 HIGHEST-SCORING PAGES:")
    for page in top_pages:
        print(f"   Page {page['page_number']} - Score: {page['score']:.4f}")
    
    # Get pages by threshold
    excellent_pages = utilizer.get_pages_by_threshold(parsed_data, 0.90)
    print(f"\n🟒 EXCELLENT PAGES (β‰₯0.90): {len(excellent_pages)} pages")
    
    # Generate utilization report
    report = utilizer.generate_utilization_report(parsed_data)
    print(f"\n{report}")
    
    print("\nβœ… Score utilization demonstration completed!")

if __name__ == "__main__":
    demonstrate_score_utilization()