Spaces:
Running
on
Zero
Running
on
Zero
File size: 145,932 Bytes
0400df3 d901124 0400df3 d901124 0400df3 3e2041e 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 |
import gradio as gr
import tempfile
import os
import fitz # PyMuPDF
import uuid
import shutil
from pymilvus import MilvusClient
import json
import sqlite3
from datetime import datetime
import hashlib
import bcrypt
import re
from typing import List, Dict, Tuple, Optional
import threading
import requests
import base64
from PIL import Image
import io
import traceback
from middleware import Middleware
from rag import Rag
from pathlib import Path
import subprocess
# importing necessary functions from dotenv library
from dotenv import load_dotenv, dotenv_values
import dotenv
import platform
import time
# Only enable PPT/PPTX conversion on Windows where COM is available
PPT_CONVERT_AVAILABLE = False
if platform.system() == 'Windows':
try:
from pptxtopdf import convert
PPT_CONVERT_AVAILABLE = True
except Exception:
PPT_CONVERT_AVAILABLE = False
# Import libraries for DOC and Excel export
try:
from docx import Document
from docx.shared import Inches, Pt
from docx.enum.text import WD_ALIGN_PARAGRAPH
from docx.enum.style import WD_STYLE_TYPE
from docx.oxml.shared import OxmlElement, qn
from docx.oxml.ns import nsdecls
from docx.oxml import parse_xml
DOCX_AVAILABLE = True
except ImportError:
DOCX_AVAILABLE = False
print("Warning: python-docx not available. DOC export will be disabled.")
try:
import openpyxl
from openpyxl import Workbook
from openpyxl.styles import Font, PatternFill, Alignment, Border, Side
from openpyxl.chart import BarChart, LineChart, PieChart, Reference
from openpyxl.utils.dataframe import dataframe_to_rows
import pandas as pd
EXCEL_AVAILABLE = True
except ImportError:
EXCEL_AVAILABLE = False
print("Warning: openpyxl/pandas not available. Excel export will be disabled.")
# loading variables from .env file
dotenv_file = dotenv.find_dotenv()
dotenv.load_dotenv(dotenv_file)
#kickstart docker and ollama servers
rag = Rag()
# Database for user management and chat history
class DatabaseManager:
def __init__(self, db_path="app_database.db"):
self.db_path = db_path
self.init_database()
def init_database(self):
"""Initialize database tables"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Users table
cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password_hash TEXT NOT NULL,
team TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
# Document collections table
cursor.execute('''
CREATE TABLE IF NOT EXISTS document_collections (
id INTEGER PRIMARY KEY AUTOINCREMENT,
collection_name TEXT UNIQUE NOT NULL,
team TEXT NOT NULL,
uploaded_by INTEGER,
upload_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
file_count INTEGER DEFAULT 0,
FOREIGN KEY (uploaded_by) REFERENCES users (id)
)
''')
conn.commit()
conn.close()
def create_user(self, username: str, password: str, team: str) -> bool:
"""Create a new user"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Hash password
password_hash = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt())
cursor.execute(
'INSERT INTO users (username, password_hash, team) VALUES (?, ?, ?)',
(username, password_hash.decode('utf-8'), team)
)
conn.commit()
conn.close()
return True
except sqlite3.IntegrityError:
return False
def authenticate_user(self, username: str, password: str) -> Optional[Dict]:
"""Authenticate user and return user info"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('SELECT id, username, password_hash, team FROM users WHERE username = ?', (username,))
user = cursor.fetchone()
conn.close()
if user and bcrypt.checkpw(password.encode('utf-8'), user[2].encode('utf-8')):
return {
'id': user[0],
'username': user[1],
'team': user[3]
}
return None
except Exception as e:
print(f"Authentication error: {e}")
return None
def save_document_collection(self, collection_name: str, team: str, user_id: int, file_count: int):
"""Save document collection info"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute(
'INSERT OR REPLACE INTO document_collections (collection_name, team, uploaded_by, file_count) VALUES (?, ?, ?, ?)',
(collection_name, team, user_id, file_count)
)
conn.commit()
conn.close()
except Exception as e:
print(f"Error saving document collection: {e}")
def get_team_collections(self, team: str) -> List[str]:
"""Get all collections for a team"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('SELECT collection_name FROM document_collections WHERE team = ?', (team,))
collections = [row[0] for row in cursor.fetchall()]
conn.close()
return collections
except Exception as e:
print(f"Error getting team collections: {e}")
return []
# User session management
class SessionManager:
def __init__(self):
self.active_sessions = {}
self.session_lock = threading.Lock()
def create_session(self, user_info: Dict) -> str:
"""Create a new session for user"""
session_id = str(uuid.uuid4())
with self.session_lock:
self.active_sessions[session_id] = {
'user_info': user_info,
'created_at': datetime.now(),
'last_activity': datetime.now()
}
return session_id
def get_session(self, session_id: str) -> Optional[Dict]:
"""Get session info"""
with self.session_lock:
if session_id in self.active_sessions:
self.active_sessions[session_id]['last_activity'] = datetime.now()
return self.active_sessions[session_id]
return None
def remove_session(self, session_id: str):
"""Remove session"""
with self.session_lock:
if session_id in self.active_sessions:
del self.active_sessions[session_id]
# Initialize managers
db_manager = DatabaseManager()
session_manager = SessionManager()
# Create default users if they don't exist
def create_default_users():
"""Create default team users"""
teams = ["Team_A", "Team_B"]
for team in teams:
username = f"admin_{team.lower()}"
password = f"admin123_{team.lower()}"
if not db_manager.authenticate_user(username, password):
db_manager.create_user(username, password, team)
print(f"Created default user: {username} for {team}")
create_default_users()
def start_services():
# --- Docker Desktop (Windows Only) ---
if platform.system() == "Windows":
def is_docker_desktop_running():
try:
# Check if "Docker Desktop.exe" is in the task list.
result = subprocess.run(
["tasklist", "/FI", "IMAGENAME eq Docker Desktop.exe"],
stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
return "Docker Desktop.exe" in result.stdout.decode()
except Exception as e:
print("Error checking Docker Desktop:", e)
return False
def start_docker_desktop():
# Adjust this path if your Docker Desktop executable is located elsewhere.
docker_desktop_path = r"C:\Program Files\Docker\Docker\Docker Desktop.exe"
if not os.path.exists(docker_desktop_path):
print("Docker Desktop executable not found. Please verify the installation path.")
return
try:
subprocess.Popen([docker_desktop_path], shell=True)
print("Docker Desktop is starting...")
except Exception as e:
print("Error starting Docker Desktop:", e)
if is_docker_desktop_running():
print("Docker Desktop is already running.")
else:
print("Docker Desktop is not running. Starting it now...")
start_docker_desktop()
# Wait for Docker Desktop to initialize (adjust delay as needed)
time.sleep(15)
# --- Ollama Server Management ---
def is_ollama_running():
if platform.system() == "Windows":
try:
# Check for "ollama.exe" in the task list (adjust if the executable name differs)
result = subprocess.run(
['tasklist', '/FI', 'IMAGENAME eq ollama.exe'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
return "ollama.exe" in result.stdout.decode().lower()
except Exception as e:
print("Error checking Ollama on Windows:", e)
return False
else:
try:
result = subprocess.run(
['pgrep', '-f', 'ollama'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
return result.returncode == 0
except Exception as e:
print("Error checking Ollama:", e)
return False
def start_ollama():
if platform.system() == "Windows":
try:
subprocess.Popen(['ollama', 'serve'], shell=True)
print("Ollama server started on Windows.")
except Exception as e:
print("Failed to start Ollama server on Windows:", e)
else:
try:
subprocess.Popen(['ollama', 'serve'])
print("Ollama server started.")
except Exception as e:
print("Failed to start Ollama server:", e)
# Ollama is no longer used; replaced by Gemini API calls.
# Skip Ollama server checks and startup.
# --- Docker Containers Management ---
def get_docker_containers():
try:
result = subprocess.run(
['docker', 'ps', '-aq'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
if result.returncode != 0:
print("Error retrieving Docker containers:", result.stderr.decode())
return []
return result.stdout.decode().splitlines()
except Exception as e:
print("Error retrieving Docker containers:", e)
return []
def get_running_docker_containers():
try:
result = subprocess.run(
['docker', 'ps', '-q'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
if result.returncode != 0:
print("Error retrieving running Docker containers:", result.stderr.decode())
return []
return result.stdout.decode().splitlines()
except Exception as e:
print("Error retrieving running Docker containers:", e)
return []
def start_docker_container(container_id):
try:
result = subprocess.run(
['docker', 'start', container_id],
stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
if result.returncode == 0:
print(f"Started Docker container {container_id}.")
else:
print(f"Failed to start Docker container {container_id}: {result.stderr.decode()}")
except Exception as e:
print(f"Error starting Docker container {container_id}: {e}")
all_containers = set(get_docker_containers())
running_containers = set(get_running_docker_containers())
stopped_containers = all_containers - running_containers
if stopped_containers:
print(f"Found {len(stopped_containers)} stopped Docker container(s). Starting them...")
for container_id in stopped_containers:
start_docker_container(container_id)
else:
print("All Docker containers are already running.")
# Skip Docker services when running on Hugging Face Spaces
if not os.getenv("SPACE_ID"):
start_services()
else:
print("Running on Hugging Face Spaces - skipping Docker services")
def generate_uuid(state):
# Check if UUID already exists in session state
if state["user_uuid"] is None:
# Generate a new UUID if not already set
state["user_uuid"] = str(uuid.uuid4())
return state["user_uuid"]
class PDFSearchApp:
def __init__(self):
self.indexed_docs = {}
self.current_pdf = None
self.db_manager = db_manager
self.session_manager = session_manager
def upload_and_convert(self, files, max_pages, folder_name=None):
"""Upload and convert files without authentication or team scoping"""
if files is None:
return "No file uploaded"
try:
total_pages = 0
uploaded_files = []
# Create simple collection name
if folder_name:
folder_name = folder_name.replace(" ", "_").replace("-", "_")
collection_name = f"{folder_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
else:
collection_name = f"documents_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# Store the collection name in indexed_docs BEFORE processing files
self.indexed_docs[collection_name] = True
print(f"π Created collection: {collection_name}")
# Clear old collections to ensure only the latest upload is referenced
self._clear_old_collections(collection_name)
for file in files[:]:
# Extract the last part of the path (file name)
filename = os.path.basename(file.name)
name, ext = os.path.splitext(filename)
pdf_path = file.name
# Convert PPT to PDF if needed
if ext.lower() in [".ppt", ".pptx"]:
if PPT_CONVERT_AVAILABLE:
output_file = os.path.splitext(file.name)[0] + '.pdf'
output_directory = os.path.dirname(file.name)
outfile = os.path.join(output_directory, output_file)
convert(file.name, outfile)
pdf_path = outfile
name = os.path.basename(outfile)
name, ext = os.path.splitext(name)
else:
return "PPT/PPTX conversion is only supported on Windows. Please upload PDFs instead."
# Create unique document ID
doc_id = f"{collection_name}_{name.replace(' ', '_').replace('-', '_')}"
print(f"Uploading file: {doc_id}")
middleware = Middleware(collection_name, create_collection=True)
# Pass collection_name as id to ensure images are saved to the right directory
pages = middleware.index(pdf_path, id=collection_name, max_pages=max_pages)
total_pages += len(pages) if pages else 0
uploaded_files.append(doc_id)
# Get the current active collection after cleanup
current_collection = self.get_current_collection()
status_message = f"Uploaded {len(uploaded_files)} files with {total_pages} total pages to collection: {collection_name}"
if current_collection:
status_message += f"\nβ
This is now your active collection for searches."
return status_message
except Exception as e:
return f"Error processing files: {str(e)}"
def _clear_old_collections(self, current_collection_name):
"""Clear old collections to ensure only the latest upload is referenced"""
try:
# Get all collections except the current one
collections_to_remove = [name for name in self.indexed_docs.keys() if name != current_collection_name]
if collections_to_remove:
print(f"ποΈ Clearing {len(collections_to_remove)} old collections to maintain latest upload reference")
for old_collection in collections_to_remove:
# Remove from indexed_docs
del self.indexed_docs[old_collection]
# Try to drop the collection from Milvus
try:
middleware = Middleware(old_collection, create_collection=False)
if middleware.drop_collection():
print(f"ποΈ Successfully dropped Milvus collection '{old_collection}'")
else:
print(f"β οΈ Failed to drop Milvus collection '{old_collection}'")
except Exception as e:
print(f"β οΈ Warning: Could not clean up Milvus collection '{old_collection}': {e}")
print(f"β
Kept only the latest collection: {current_collection_name}")
else:
print(f"β
No old collections to clear. Current collection: {current_collection_name}")
except Exception as e:
print(f"β οΈ Warning: Error clearing old collections: {e}")
# Don't fail the upload if cleanup fails
def get_current_collection_status(self):
"""Get a user-friendly status message about the current collection"""
current_collection = self.get_current_collection()
if current_collection:
return f"β
Currently active collection: {current_collection}"
else:
return "β No documents uploaded yet. Please upload a document to get started."
def get_current_collection(self):
"""Get the name of the currently active collection (most recent upload)"""
if not self.indexed_docs:
return None
available_collections = list(self.indexed_docs.keys())
if not available_collections:
return None
# Sort by timestamp to get the most recent one
def extract_timestamp(collection_name):
try:
parts = collection_name.split('_')
if len(parts) >= 3:
date_part = parts[-2]
time_part = parts[-1]
timestamp = f"{date_part}_{time_part}"
return timestamp
return collection_name
except:
return collection_name
available_collections.sort(key=extract_timestamp, reverse=True)
return available_collections[0]
def display_file_list(self, text):
try:
# Retrieve all entries in the specified directory
# Use the same base directory logic as PdfManager
base_output_dir = self._ensure_base_directory()
directory_path = base_output_dir
current_working_directory = os.getcwd()
directory_path = os.path.join(current_working_directory, directory_path)
entries = os.listdir(directory_path)
# Filter out entries that are directories
directories = [entry for entry in entries if os.path.isdir(os.path.join(directory_path, entry))]
return directories
except FileNotFoundError:
return f"The directory {directory_path} does not exist."
except PermissionError:
return f"Permission denied to access {directory_path}."
except Exception as e:
return str(e)
def search_documents(self, query, num_results):
print(f"Searching for query: {query}")
if not query:
print("Please enter a search query")
return "Please enter a search query", "--", "Please enter a search query", [], None, None, None, None
try:
# First, check if there are any indexed documents
if not self.indexed_docs:
return "No documents have been uploaded yet. Please upload some documents first.", "--", "No documents available for search", [], None, None, None, None
# Clean up any invalid collections first
print("π§Ή Cleaning up invalid collections...")
removed_count = self._cleanup_invalid_collections()
if removed_count > 0:
print(f"ποΈ Removed {removed_count} invalid collections")
# Check again after cleanup
if not self.indexed_docs:
return "No valid collections found after cleanup. Please re-upload your documents.", "--", "No valid collections available", [], None, None, None, None
# Get the most recent collection name from indexed docs (latest upload)
available_collections = list(self.indexed_docs.keys())
print(f"π Available collections after cleanup: {available_collections}")
if not available_collections:
return "No collections available for search. Please upload some documents first.", "--", "No collections available", [], None, None, None, None
# Sort collections by timestamp to get the most recent one
# Collections are named like "documents_20250101_120000" or "folder_20250101_120000"
def extract_timestamp(collection_name):
try:
# Extract the timestamp part after the last underscore
parts = collection_name.split('_')
if len(parts) >= 3:
# Get the last two parts which should be date and time
date_part = parts[-2]
time_part = parts[-1]
timestamp = f"{date_part}_{time_part}"
return timestamp
return collection_name
except:
return collection_name
# Sort by timestamp in descending order (most recent first)
available_collections.sort(key=extract_timestamp, reverse=True)
collection_name = available_collections[0]
print(f"π Available collections sorted by timestamp: {available_collections}")
print(f"π Searching in most recent collection: {collection_name}")
# Add collection info to the search results for user clarity
collection_info = f"π Searching in collection: {collection_name}"
middleware = Middleware(collection_name, create_collection=False)
# Enhanced multi-page retrieval with vision-guided chunking approach
# Get more results than requested to allow for intelligent filtering
# Request 3x the number of results for better selection
search_results = middleware.search([query], topk=max(num_results * 3, 20))[0]
# π COMPREHENSIVE SEARCH RESULTS LOGGING
print(f"\nπ SEARCH RESULTS SUMMARY")
print(f"π Retrieved {len(search_results)} total results from search")
if len(search_results) > 0:
print(f"π Top result score: {search_results[0][0]:.4f}")
print(f"π Bottom result score: {search_results[-1][0]:.4f}")
print(f"π Score range: {search_results[-1][0]:.4f} - {search_results[0][0]:.4f}")
# Show top 5 results with page numbers
print(f"\nπ TOP 5 HIGHEST SCORING PAGES:")
for i, (score, doc_id) in enumerate(search_results[:5], 1):
page_num = doc_id + 1 # Convert to 1-based page numbering
print(f" {i}. Page {page_num} (doc_id: {doc_id}) - Score: {score:.4f}")
# Calculate and display score statistics
scores = [result[0] for result in search_results]
avg_score = sum(scores) / len(scores)
print(f"\nπ SCORE STATISTICS:")
print(f" Average Score: {avg_score:.4f}")
print(f" Score Variance: {sum((s - avg_score) ** 2 for s in scores) / len(scores):.4f}")
# Count pages by relevance level
excellent = sum(1 for s in scores if s >= 0.90)
very_good = sum(1 for s in scores if 0.80 <= s < 0.90)
good = sum(1 for s in scores if 0.70 <= s < 0.80)
moderate = sum(1 for s in scores if 0.60 <= s < 0.70)
basic = sum(1 for s in scores if 0.50 <= s < 0.60)
poor = sum(1 for s in scores if s < 0.50)
print(f"\nπ RELEVANCE DISTRIBUTION:")
print(f" π’ Excellent (β₯0.90): {excellent} pages")
print(f" π‘ Very Good (0.80-0.89): {very_good} pages")
print(f" π Good (0.70-0.79): {good} pages")
print(f" π΅ Moderate (0.60-0.69): {moderate} pages")
print(f" π£ Basic (0.50-0.59): {basic} pages")
print(f" π΄ Poor (<0.50): {poor} pages")
print("-" * 60)
if not search_results:
return "No search results found", "--", "No search results found for your query", [], None, None, None, None
# Implement intelligent multi-page selection based on research
selected_results = self._select_relevant_pages_new_format(search_results, query, num_results)
# π SELECTION LOGGING - Show which pages were selected
print(f"\nπ― PAGE SELECTION RESULTS")
print(f"π Requested: {num_results} pages")
print(f"π Selected: {len(selected_results)} pages")
print(f"π Selection rate: {len(selected_results)/len(search_results)*100:.1f}% of available results")
print("-" * 60)
print(f"π SELECTED PAGES WITH SCORES:")
for i, (score, doc_id) in enumerate(selected_results, 1):
page_num = doc_id + 1
relevance_level = self._get_relevance_level(score)
print(f" {i}. Page {page_num:2d} (doc_id: {doc_id:2d}) | Score: {score:8.4f} | {relevance_level}")
# Calculate selection statistics
if selected_results:
selected_scores = [result[0] for result in selected_results]
avg_selected_score = sum(selected_scores) / len(selected_scores)
print(f"\nπ SELECTION STATISTICS:")
print(f" Average selected score: {avg_selected_score:.4f}")
print(f" Highest selected score: {selected_scores[0]:.4f}")
print(f" Lowest selected score: {selected_scores[-1]:.4f}")
print(f" Score improvement over average: {avg_selected_score - avg_score:.4f}")
print("-" * 60)
# Process selected results
cited_pages = []
img_paths = []
all_paths = []
page_scores = []
print(f"π Processing {len(selected_results)} selected results...")
# Ensure base directory exists and get the correct path
base_output_dir = self._ensure_base_directory()
print(f"π Using base directory: {base_output_dir}")
print(f"π Collection name: {collection_name}")
print(f"π Environment: {'Hugging Face Spaces' if self._is_huggingface_spaces() else 'Local Development'}")
for i, (score, doc_id) in enumerate(selected_results):
# Use the index as page number since doc_id is just an identifier
# This ensures we look for page_1.png, page_2.png, etc.
display_page_num = i + 1
coll_num = collection_name # Use the current collection name
# Use debug function to get paths and check existence
img_path, path, file_exists = self._debug_file_paths(base_output_dir, coll_num, display_page_num)
if file_exists:
img_paths.append(img_path)
all_paths.append(path)
page_scores.append(score)
cited_pages.append(f"Page {display_page_num} from {coll_num}")
print(f"β
Retrieved page {i+1}: {img_path} (Score: {score:.3f})")
else:
print(f"β Image file not found: {img_path}")
# Try alternative paths with better fallback logic
alt_paths = [
# Primary path (should work in Hugging Face Spaces)
img_path,
# Relative paths from app directory
os.path.join(os.path.dirname(os.path.abspath(__file__)), "pages", coll_num, f"page_{display_page_num}.png"),
# Current working directory paths
f"pages/{coll_num}/page_{display_page_num}.png",
f"./pages/{coll_num}/page_{display_page_num}.png",
os.path.join(os.getcwd(), "pages", coll_num, f"page_{display_page_num}.png"),
# Alternative base directories
os.path.join("/tmp", "pages", coll_num, f"page_{display_page_num}.png"),
os.path.join("/home/user", "pages", coll_num, f"page_{display_page_num}.png")
]
print(f"π Trying alternative paths for page {display_page_num}:")
for alt_path in alt_paths:
print(f" π Checking: {alt_path}")
if os.path.exists(alt_path):
print(f"β
Found alternative path: {alt_path}")
img_paths.append(alt_path)
all_paths.append(alt_path.replace(".png", ""))
page_scores.append(score)
cited_pages.append(f"Page {display_page_num} from {coll_num}")
break
else:
print(f"β No alternative path found for page {display_page_num}")
print(f"π Final count: {len(img_paths)} valid pages out of {len(selected_results)} selected")
# π FINAL RESULTS SUMMARY
if img_paths:
print(f"\nπ FINAL RETRIEVAL SUMMARY")
print(f"π Successfully retrieved: {len(img_paths)} pages")
print(f"π Final page scores:")
for i, (img_path, score) in enumerate(zip(img_paths, page_scores), 1):
# Extract page number from path
page_num = img_path.split('page_')[1].split('.png')[0] if 'page_' in img_path else f"Page {i}"
print(f" {i}. {page_num} - Score: {score:.4f}")
if page_scores:
final_avg_score = sum(page_scores) / len(page_scores)
print(f"\nπ FINAL STATISTICS:")
print(f" Average final score: {final_avg_score:.4f}")
print(f" Highest final score: {max(page_scores):.4f}")
print(f" Lowest final score: {min(page_scores):.4f}")
print("=" * 60)
if not img_paths:
return "No valid image files found", "--", "Error: No valid image files found for the search results", [], None, None, None, None
# Generate RAG response with multiple pages using enhanced approach
try:
print("π€ Generating RAG response...")
rag_response, csv_filepath, doc_filepath, excel_filepath = self._generate_multi_page_response(query, img_paths, cited_pages, page_scores)
print("β
RAG response generated successfully")
except Exception as e:
error_code = "RAG001"
error_msg = f"β **Error {error_code}**: Failed to generate RAG response"
print(f"{error_msg}: {str(e)}")
print(f"β Traceback: {traceback.format_exc()}")
# Return error response with proper format
return (
error_msg, # path
"--", # images
f"{error_msg}\n\n**Details**: {str(e)}\n\n**Error Code**: {error_code}", # llm_answer
cited_pages, # cited_pages_display
None, # csv_download
None, # doc_download
None # excel_download
)
# Prepare downloads
csv_download = self._prepare_csv_download(csv_filepath)
doc_download = self._prepare_doc_download(doc_filepath)
excel_download = self._prepare_excel_download(excel_filepath)
# Return multiple images if available, otherwise single image
if len(img_paths) > 1:
# Format for Gallery component: list of (image_path, caption) tuples
# Extract page numbers from cited_pages for accurate captions
gallery_images = []
for i, img_path in enumerate(img_paths):
# Extract page number from cited_pages
page_info = cited_pages[i].split(" from ")[0] # "Page X"
page_num = page_info.split("Page ")[1] # "X"
gallery_images.append((img_path, f"Page {page_num}"))
return ", ".join(all_paths), gallery_images, rag_response, cited_pages, csv_download, doc_download, excel_download
else:
# Single image format
page_info = cited_pages[0].split(" from ")[0] # "Page X"
page_num = page_info.split("Page ")[1] # "X"
return all_paths[0], [(img_paths[0], f"Page {page_num}")], rag_response, cited_pages, csv_download, doc_download, excel_download
except Exception as e:
error_msg = f"Error during search: {str(e)}"
print(f"β Search error: {error_msg}")
# Return exactly 7 outputs to match Gradio expectations
return error_msg, "--", error_msg, [], None, None, None, None
def _select_relevant_pages_new_format(self, search_results, query, num_results):
"""
Intelligent page selection for new Milvus format: (score, doc_id)
"""
if len(search_results) <= num_results:
return search_results
# Sort by relevance score
sorted_results = sorted(search_results, key=lambda x: x[0], reverse=True)
# Simple strategy: take top N results
selected = sorted_results[:num_results]
print(f"Requested {num_results} pages, selected {len(selected)} pages")
return selected
def _get_relevance_level(self, score):
"""Get human-readable relevance level based on score"""
if score >= 0.90:
return "π’ EXCELLENT - Highly relevant"
elif score >= 0.80:
return "π‘ VERY GOOD - Very relevant"
elif score >= 0.70:
return "π GOOD - Relevant"
elif score >= 0.60:
return "π΅ MODERATE - Somewhat relevant"
elif score >= 0.50:
return "π£ BASIC - Minimally relevant"
else:
return "π΄ POOR - Not relevant"
def _optimize_consecutive_pages(self, selected, all_results, target_count=None):
"""
Optimize selection to include consecutive pages when beneficial
"""
# Group by collection
collection_pages = {}
for score, page_num, coll_num in selected:
if coll_num not in collection_pages:
collection_pages[coll_num] = []
collection_pages[coll_num].append((score, page_num, coll_num))
optimized = []
for coll_num, pages in collection_pages.items():
if len(pages) > 1:
# Check if pages are consecutive
page_nums = [p[1] for p in pages]
page_nums.sort()
# If pages are consecutive, add any missing pages in between
if max(page_nums) - min(page_nums) == len(page_nums) - 1:
# Find all pages in this range from all_results
for score, page_num, coll in all_results:
if (coll == coll_num and
min(page_nums) <= page_num <= max(page_nums) and
(score, page_num, coll) not in optimized):
optimized.append((score, page_num, coll))
else:
optimized.extend(pages)
else:
optimized.extend(pages)
# Ensure we maintain the target count if specified
if target_count and len(optimized) != target_count:
if len(optimized) > target_count:
# Trim to target count, keeping highest scoring
optimized.sort(key=lambda x: x[0], reverse=True)
optimized = optimized[:target_count]
elif len(optimized) < target_count:
# Add more pages to reach target
for score, page_num, coll in all_results:
if (score, page_num, coll) not in optimized and len(optimized) < target_count:
optimized.append((score, page_num, coll))
return optimized
def _generate_comprehensive_analysis(self, query, cited_pages, page_scores):
"""
Generate comprehensive analysis section based on research strategies
Implements hierarchical retrieval insights and cross-reference analysis
"""
try:
# Analyze query complexity and information needs
query_lower = query.lower()
# Determine query type for targeted analysis
query_types = []
if any(word in query_lower for word in ['compare', 'difference', 'similarities', 'versus']):
query_types.append("Comparative Analysis")
if any(word in query_lower for word in ['procedure', 'method', 'how to', 'steps']):
query_types.append("Procedural Information")
if any(word in query_lower for word in ['safety', 'warning', 'danger', 'risk']):
query_types.append("Safety Information")
if any(word in query_lower for word in ['specification', 'technical', 'measurement', 'data']):
query_types.append("Technical Specifications")
if any(word in query_lower for word in ['overview', 'summary', 'comprehensive', 'complete']):
query_types.append("Comprehensive Overview")
if any(word in query_lower for word in ['table', 'csv', 'spreadsheet', 'data', 'list', 'chart']):
query_types.append("Tabular Data Request")
# Calculate information quality metrics
avg_score = sum(page_scores) / len(page_scores) if page_scores else 0
score_variance = sum((score - avg_score) ** 2 for score in page_scores) / len(page_scores) if page_scores else 0
# Generate analysis insights
analysis = f"""
π¬ **Comprehensive Analysis & Insights**:
π **Query Analysis**:
β’ Query Type: {', '.join(query_types) if query_types else 'General Information'}
β’ Information Complexity: {'High' if len(cited_pages) > 3 else 'Medium' if len(cited_pages) > 1 else 'Low'}
β’ Cross-Reference Depth: {'Excellent' if len(set([p.split(' from ')[1].split(' (')[0] for p in cited_pages])) > 2 else 'Good' if len(set([p.split(' from ')[1].split(' (')[0] for p in cited_pages])) > 1 else 'Limited'}
π **Information Quality Assessment**:
β’ Average Relevance: {avg_score:.3f} ({'Excellent' if avg_score > 0.9 else 'Very Good' if avg_score > 0.8 else 'Good' if avg_score > 0.7 else 'Moderate' if avg_score > 0.6 else 'Basic'})
β’ Information Consistency: {'High' if score_variance < 0.1 else 'Moderate' if score_variance < 0.2 else 'Variable'}
β’ Source Reliability: {'High' if avg_score > 0.8 and len(cited_pages) > 2 else 'Moderate' if avg_score > 0.6 else 'Requires Verification'}
π― **Information Coverage Analysis**:
β’ Primary Information: {'Comprehensive' if any('primary' in p.lower() or 'main' in p.lower() for p in cited_pages) else 'Standard'}
β’ Supporting Details: {'Extensive' if len(cited_pages) > 3 else 'Adequate' if len(cited_pages) > 1 else 'Basic'}
β’ Technical Depth: {'High' if any('technical' in p.lower() or 'specification' in p.lower() for p in cited_pages) else 'Standard'}
π‘ **Strategic Insights**:
β’ Information Gaps: {'Minimal' if avg_score > 0.8 and len(cited_pages) > 3 else 'Moderate' if avg_score > 0.6 else 'Significant - consider additional sources'}
β’ Cross-Validation: {'Strong' if len(set([p.split(' from ')[1].split(' (')[0] for p in cited_pages])) > 1 else 'Limited to single source'}
β’ Practical Applicability: {'High' if any('procedure' in p.lower() or 'method' in p.lower() for p in cited_pages) else 'Moderate'}
π **Recommendations for Further Research**:
β’ {'Consider additional technical specifications' if not any('technical' in p.lower() for p in cited_pages) else 'Technical coverage adequate'}
β’ {'Seek safety guidelines and warnings' if not any('safety' in p.lower() for p in cited_pages) else 'Safety information included'}
β’ {'Look for comparative analysis' if not any('compare' in p.lower() for p in cited_pages) else 'Comparative analysis available'}
"""
return analysis
except Exception as e:
print(f"Error generating comprehensive analysis: {e}")
return "π¬ **Analysis**: Comprehensive analysis of retrieved information completed."
def _detect_table_request(self, query):
"""
Detect if the user is requesting tabular data
"""
query_lower = query.lower()
table_keywords = [
'table', 'csv', 'spreadsheet', 'data table', 'list', 'chart',
'tabular', 'matrix', 'grid', 'dataset', 'data set',
'show me a table', 'create a table', 'generate table',
'in table format', 'as a table', 'tabular format'
]
return any(keyword in query_lower for keyword in table_keywords)
def _detect_report_request(self, query):
"""
Detect if the user is requesting a comprehensive report
"""
query_lower = query.lower()
report_keywords = [
'report', 'comprehensive report', 'detailed report', 'full report',
'complete report', 'comprehensive analysis', 'detailed analysis',
'full analysis', 'complete analysis', 'comprehensive overview',
'detailed overview', 'full overview', 'complete overview',
'comprehensive summary', 'detailed summary', 'full summary',
'complete summary', 'comprehensive document', 'detailed document',
'full document', 'complete document', 'comprehensive review',
'detailed review', 'full review', 'complete review',
'export report', 'generate report', 'create report',
'doc format', 'word document', 'word doc', 'document format'
]
return any(keyword in query_lower for keyword in report_keywords)
def _detect_chart_request(self, query):
"""
Detect if the user is requesting charts, graphs, or visualizations
"""
query_lower = query.lower()
chart_keywords = [
'chart', 'graph', 'bar chart', 'line chart', 'pie chart',
'bar graph', 'line graph', 'pie graph', 'histogram',
'scatter plot', 'scatter chart', 'area chart', 'column chart',
'visualization', 'visualize', 'plot', 'figure', 'diagram',
'excel chart', 'excel graph', 'spreadsheet chart',
'create chart', 'generate chart', 'make chart',
'create graph', 'generate graph', 'make graph',
'chart data', 'graph data', 'plot data', 'visualize data',
'bar graph', 'line graph', 'pie graph', 'histogram',
'scatter plot', 'area chart', 'column chart'
]
return any(keyword in query_lower for keyword in chart_keywords)
def _extract_custom_headers(self, query):
"""
Extract custom headers from user query for both tables and charts
Examples:
- "create table with columns: Name, Age, Department"
- "create chart with headers: Threat Type, Frequency, Risk Level"
- "excel export with columns: Category, Value, Description"
"""
try:
# Look for header specifications in the query
header_patterns = [
r'columns?:\s*([^,]+(?:,\s*[^,]+)*)', # "columns: A, B, C"
r'headers?:\s*([^,]+(?:,\s*[^,]+)*)', # "headers: A, B, C"
r'\bwith\s+columns?\s*([^,]+(?:,\s*[^,]+)*)', # "with columns A, B, C"
r'\bwith\s+headers?\s*([^,]+(?:,\s*[^,]+)*)', # "with headers A, B, C"
r'headers?\s*=\s*([^,]+(?:,\s*[^,]+)*)', # "headers = A, B, C"
r'format:\s*([^,]+(?:,\s*[^,]+)*)', # "format: A, B, C"
r'chart\s+headers?:\s*([^,]+(?:,\s*[^,]+)*)', # "chart headers: A, B, C"
r'excel\s+headers?:\s*([^,]+(?:,\s*[^,]+)*)', # "excel headers: A, B, C"
r'chart\s+with\s+headers?:\s*([^,]+(?:,\s*[^,]+)*)', # "chart with headers: A, B, C"
r'excel\s+with\s+headers?:\s*([^,]+(?:,\s*[^,]+)*)', # "excel with headers: A, B, C"
]
for pattern in header_patterns:
match = re.search(pattern, query, re.IGNORECASE)
if match:
headers_str = match.group(1)
# Split by comma and clean up
headers = [h.strip() for h in headers_str.split(',')]
# Remove empty headers
headers = [h for h in headers if h]
if headers:
print(f"π Custom headers detected: {headers}")
return headers
return None
except Exception as e:
print(f"Error extracting custom headers: {e}")
return None
def _generate_csv_table_response(self, query, rag_response, cited_pages, page_scores):
"""
Generate a CSV table response when user requests tabular data
"""
try:
# Extract custom headers from query if specified
custom_headers = self._extract_custom_headers(query)
# Extract structured data from the RAG response
csv_data = self._extract_structured_data(rag_response, cited_pages, page_scores, custom_headers)
if csv_data:
# Format as CSV
csv_content = self._format_as_csv(csv_data)
# Generate a unique filename for the CSV
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_query = "".join(c for c in query[:30] if c.isalnum() or c in (' ', '-', '_')).rstrip()
safe_query = safe_query.replace(' ', '_')
filename = f"table_{safe_query}_{timestamp}.csv"
filepath = os.path.join("temp", filename)
# Ensure temp directory exists
os.makedirs("temp", exist_ok=True)
# Save CSV file
with open(filepath, 'w', encoding='utf-8') as f:
f.write(csv_content)
# Create enhanced response with CSV and download link
header_info = ""
if custom_headers:
header_info = f"""
π **Custom Headers Applied**:
β’ Headers: {', '.join(custom_headers)}
β’ Data automatically mapped to your specified columns
"""
table_response = f"""
{rag_response}
π **CSV Table Generated Successfully**:
```csv
{csv_content}
```
{header_info}
πΎ **Download Options**:
β’ **Direct Download**: Click the download button below
β’ **Manual Copy**: Copy the CSV content above and save as .csv file
π **Table Information**:
β’ Rows: {len(csv_data) if csv_data else 0}
β’ Columns: {len(csv_data[0]) if csv_data and len(csv_data) > 0 else 0}
β’ Data Source: {len(cited_pages)} document pages
β’ Filename: {filename}
"""
return table_response, filepath
else:
# Fallback if no structured data found
header_suggestion = ""
if custom_headers:
header_suggestion = f"""
π **Custom Headers Detected**: {', '.join(custom_headers)}
The system found your specified headers but couldn't extract matching data from the response.
"""
fallback_response = f"""
{rag_response}
π **Table Request Detected**:
The system detected you requested tabular data, but the current response doesn't contain structured information suitable for a CSV table.
{header_suggestion}
π‘ **Suggestions**:
β’ Try asking for specific data types (e.g., "list of safety procedures", "compare different methods")
β’ Request numerical data or comparisons
β’ Ask for categorized information
β’ Specify custom headers: "create table with columns: Name, Age, Department"
"""
return fallback_response, None
except Exception as e:
print(f"Error generating CSV table response: {e}")
return rag_response, None
def _extract_structured_data(self, rag_response, cited_pages, page_scores, custom_headers=None):
"""
Extract ANY structured data from RAG response - no predefined templates
"""
try:
lines = rag_response.split('\n')
structured_data = []
# If user specified custom headers, try to extract data that fits
if custom_headers:
headers = custom_headers
structured_data = [headers]
# Extract any data that could fit the headers
data_rows = []
# Look for any structured content in the response
for line in lines:
line = line.strip()
if line and not line.startswith('#'): # Skip markdown headers
# Try to extract meaningful data from each line
data_row = self._extract_data_from_line(line, headers)
if data_row:
data_rows.append(data_row)
# If we found data, use it; otherwise create placeholder rows
if data_rows:
structured_data.extend(data_rows)
else:
# Create placeholder rows based on available content
for i, citation in enumerate(cited_pages):
row = self._create_placeholder_row(citation, headers, i)
structured_data.append(row)
return structured_data
# No custom headers - let's be smart about what we find
else:
# Look for any obvious table-like structures first
table_data = self._find_table_structures(lines)
if table_data:
return table_data
# Look for any structured lists or data
list_data = self._find_list_structures(lines)
if list_data:
return list_data
# Look for any key-value patterns
kv_data = self._find_key_value_structures(lines)
if kv_data:
return kv_data
# Last resort: create a simple summary
return self._create_summary_table(cited_pages)
except Exception as e:
print(f"Error extracting structured data: {e}")
return None
def _extract_data_from_line(self, line, headers):
"""Extract data from a line that could fit the specified headers"""
try:
# Remove common prefixes
line = re.sub(r'^[\dβ’\-\.\s]+', '', line)
# If we have multiple headers, try to split the line
if len(headers) > 1:
# Look for natural splits (commas, semicolons, etc.)
if ',' in line:
parts = [p.strip() for p in line.split(',')]
elif ';' in line:
parts = [p.strip() for p in line.split(';')]
elif ' - ' in line:
parts = [p.strip() for p in line.split(' - ')]
elif ':' in line:
parts = [p.strip() for p in line.split(':', 1)]
else:
# Just put the whole line in the first column
parts = [line] + [''] * (len(headers) - 1)
# Pad or truncate to match header count
while len(parts) < len(headers):
parts.append('')
return parts[:len(headers)]
else:
return [line]
except Exception as e:
print(f"Error extracting data from line: {e}")
return None
def _create_placeholder_row(self, citation, headers, index):
"""Create a placeholder row based on available data"""
try:
row = []
for header in headers:
header_lower = header.lower()
if 'page' in header_lower or 'number' in header_lower:
page_num = citation.split('Page ')[1].split(' from')[0] if 'Page ' in citation else str(index + 1)
row.append(page_num)
elif 'collection' in header_lower or 'source' in header_lower or 'document' in header_lower:
collection = citation.split(' from ')[1] if ' from ' in citation else 'Unknown'
row.append(collection)
elif 'content' in header_lower or 'description' in header_lower or 'summary' in header_lower:
row.append(f"Content from {citation}")
else:
# For unknown headers, try to extract something relevant
if 'page' in citation:
row.append(citation)
else:
row.append('')
return row
except Exception as e:
print(f"Error creating placeholder row: {e}")
return [''] * len(headers)
def _find_table_structures(self, lines):
"""Find any table-like structures in the text"""
try:
table_lines = []
for line in lines:
line = line.strip()
# Look for lines with multiple columns (separated by |, tabs, or multiple spaces)
if '|' in line or '\t' in line or re.search(r'\s{3,}', line):
table_lines.append(line)
if table_lines:
# Try to determine headers from the first line
first_line = table_lines[0]
if '|' in first_line:
headers = [h.strip() for h in first_line.split('|')]
else:
headers = re.split(r'\s{3,}', first_line)
structured_data = [headers]
# Process remaining lines
for line in table_lines[1:]:
if '|' in line:
columns = [col.strip() for col in line.split('|')]
else:
columns = re.split(r'\s{3,}', line)
if len(columns) >= 2:
structured_data.append(columns)
return structured_data
return None
except Exception as e:
print(f"Error finding table structures: {e}")
return None
def _find_list_structures(self, lines):
"""Find any list-like structures in the text"""
try:
items = []
for line in lines:
line = line.strip()
# Remove common list markers
if re.match(r'^[\dβ’\-\.]+', line):
item = re.sub(r'^[\dβ’\-\.\s]+', '', line)
if item:
items.append(item)
if items:
# Create a simple list structure
structured_data = [['Item', 'Description']]
for i, item in enumerate(items, 1):
structured_data.append([str(i), item])
return structured_data
return None
except Exception as e:
print(f"Error finding list structures: {e}")
return None
def _find_key_value_structures(self, lines):
"""Find any key-value structures in the text"""
try:
kv_pairs = []
for line in lines:
line = line.strip()
# Look for key: value patterns
if re.match(r'^[A-Za-z\s]+:\s+', line):
kv_pairs.append(line)
if kv_pairs:
structured_data = [['Property', 'Value']]
for pair in kv_pairs:
if ':' in pair:
key, value = pair.split(':', 1)
structured_data.append([key.strip(), value.strip()])
return structured_data
return None
except Exception as e:
print(f"Error finding key-value structures: {e}")
return None
def _create_summary_table(self, cited_pages):
"""Create a simple summary table as last resort"""
try:
structured_data = [['Page', 'Collection', 'Content']]
for i, citation in enumerate(cited_pages):
collection = citation.split(' from ')[1] if ' from ' in citation else 'Unknown'
page_num = citation.split('Page ')[1].split(' from')[0] if 'Page ' in citation else str(i+1)
structured_data.append([page_num, collection, f"Content from {citation}"])
return structured_data
except Exception as e:
print(f"Error creating summary table: {e}")
return None
except Exception as e:
print(f"Error extracting structured data: {e}")
return None
def _format_as_csv(self, data):
"""
Format structured data as CSV
"""
try:
csv_lines = []
for row in data:
# Escape commas and quotes in CSV
escaped_row = []
for cell in row:
cell_str = str(cell)
if ',' in cell_str or '"' in cell_str or '\n' in cell_str:
# Escape quotes and wrap in quotes
cell_str = '"' + cell_str.replace('"', '""') + '"'
escaped_row.append(cell_str)
csv_lines.append(','.join(escaped_row))
return '\n'.join(csv_lines)
except Exception as e:
print(f"Error formatting CSV: {e}")
return "Error,Generating,CSV,Format"
def _prepare_csv_download(self, csv_filepath):
"""
Prepare CSV file for download in Gradio
"""
if csv_filepath and os.path.exists(csv_filepath):
return csv_filepath
else:
return None
def _generate_comprehensive_doc_report(self, query, rag_response, cited_pages, page_scores, user_info=None):
"""
Generate a comprehensive DOC report with proper formatting and structure
"""
if not DOCX_AVAILABLE:
return None, "DOC export not available - python-docx library not installed"
try:
print("π [REPORT] Generating comprehensive DOC report...")
# Create a new Document
doc = Document()
# Set up document styles
self._setup_document_styles(doc)
# Add title page
self._add_title_page(doc, query, user_info)
# Add executive summary
self._add_executive_summary(doc, query, rag_response)
# Add detailed analysis
self._add_detailed_analysis(doc, rag_response, cited_pages, page_scores)
# Add methodology
self._add_methodology_section(doc, cited_pages, page_scores)
# Add findings and conclusions
self._add_findings_conclusions(doc, rag_response, cited_pages)
# Add appendices
self._add_appendices(doc, cited_pages, page_scores)
# Generate unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_query = "".join(c for c in query[:30] if c.isalnum() or c in (' ', '-', '_')).rstrip()
safe_query = safe_query.replace(' ', '_')
filename = f"comprehensive_report_{safe_query}_{timestamp}.docx"
filepath = os.path.join("temp", filename)
# Ensure temp directory exists
os.makedirs("temp", exist_ok=True)
# Save the document
doc.save(filepath)
print(f"β
[REPORT] Comprehensive DOC report generated: {filepath}")
return filepath, None
except Exception as e:
error_msg = f"Error generating DOC report: {str(e)}"
print(f"β [REPORT] {error_msg}")
return None, error_msg
def _setup_document_styles(self, doc):
"""Set up professional document styles"""
try:
# Import RGBColor for proper color handling
from docx.shared import RGBColor
# Title style
title_style = doc.styles.add_style('CustomTitle', WD_STYLE_TYPE.PARAGRAPH)
title_font = title_style.font
title_font.name = 'Calibri'
title_font.size = Pt(24)
title_font.bold = True
title_font.color.rgb = RGBColor(47, 84, 150) # #2F5496
# Heading 1 style
h1_style = doc.styles.add_style('CustomHeading1', WD_STYLE_TYPE.PARAGRAPH)
h1_font = h1_style.font
h1_font.name = 'Calibri'
h1_font.size = Pt(16)
h1_font.bold = True
h1_font.color.rgb = RGBColor(47, 84, 150) # #2F5496
# Heading 2 style
h2_style = doc.styles.add_style('CustomHeading2', WD_STYLE_TYPE.PARAGRAPH)
h2_font = h2_style.font
h2_font.name = 'Calibri'
h2_font.size = Pt(14)
h2_font.bold = True
h2_font.color.rgb = RGBColor(47, 84, 150) # #2F5496
# Body text style
body_style = doc.styles.add_style('CustomBody', WD_STYLE_TYPE.PARAGRAPH)
body_font = body_style.font
body_font.name = 'Calibri'
body_font.size = Pt(11)
except Exception as e:
print(f"Warning: Could not set up custom styles: {e}")
def _add_title_page(self, doc, query, user_info):
"""Add professional title page for security analysis report"""
try:
# Import RGBColor for proper color handling
from docx.shared import RGBColor
# Title
title = doc.add_paragraph()
title.alignment = WD_ALIGN_PARAGRAPH.CENTER
title_run = title.add_run("SECURITY THREAT ANALYSIS REPORT")
title_run.font.name = 'Calibri'
title_run.font.size = Pt(24)
title_run.font.bold = True
title_run.font.color.rgb = RGBColor(47, 84, 150) # #2F5496
# Subtitle
subtitle = doc.add_paragraph()
subtitle.alignment = WD_ALIGN_PARAGRAPH.CENTER
subtitle_run = subtitle.add_run(f"Threat Intelligence Query: {query}")
subtitle_run.font.name = 'Calibri'
subtitle_run.font.size = Pt(14)
subtitle_run.font.italic = True
# Add spacing
doc.add_paragraph()
doc.add_paragraph()
# Report classification
classification = doc.add_paragraph()
classification.alignment = WD_ALIGN_PARAGRAPH.CENTER
classification_run = classification.add_run("SECURITY ANALYSIS & THREAT INTELLIGENCE")
classification_run.font.name = 'Calibri'
classification_run.font.size = Pt(12)
classification_run.font.bold = True
classification_run.font.color.rgb = RGBColor(220, 53, 69) # #dc3545
# Report details
details = doc.add_paragraph()
details.alignment = WD_ALIGN_PARAGRAPH.CENTER
details_run = details.add_run(f"Generated on: {datetime.now().strftime('%B %d, %Y at %I:%M %p')}")
details_run.font.name = 'Calibri'
details_run.font.size = Pt(11)
if user_info:
user_details = doc.add_paragraph()
user_details.alignment = WD_ALIGN_PARAGRAPH.CENTER
user_run = user_details.add_run(f"Generated by: {user_info['username']} ({user_info['team']})")
user_run.font.name = 'Calibri'
user_run.font.size = Pt(11)
# Add page break
doc.add_page_break()
except Exception as e:
print(f"Warning: Could not add title page: {e}")
def _add_executive_summary(self, doc, query, rag_response):
"""Add executive summary section aligned with security analysis framework"""
try:
# Import RGBColor for proper color handling
from docx.shared import RGBColor
# Section heading
heading = doc.add_paragraph()
heading_run = heading.add_run("EXECUTIVE SUMMARY")
heading_run.font.name = 'Calibri'
heading_run.font.size = Pt(16)
heading_run.font.bold = True
heading_run.font.color.rgb = RGBColor(47, 84, 150) # #2F5496
# Report purpose
purpose = doc.add_paragraph()
purpose_run = purpose.add_run("This security analysis report provides comprehensive threat assessment and operational insights based on the query: ")
purpose_run.font.name = 'Calibri'
purpose_run.font.size = Pt(11)
# Query in bold
query_text = doc.add_paragraph()
query_run = query_text.add_run(f'"{query}"')
query_run.font.name = 'Calibri'
query_run.font.size = Pt(11)
query_run.font.bold = True
# Analysis framework overview
framework_heading = doc.add_paragraph()
framework_run = framework_heading.add_run("Analysis Framework:")
framework_run.font.name = 'Calibri'
framework_run.font.size = Pt(12)
framework_run.font.bold = True
# Framework components
framework_components = [
"β’ Fact-Finding & Contextualization: Background information and context development",
"β’ Case Study Identification: Incident prevalence and TTP extraction",
"β’ Analytical Assessment: Intent, motivation, and threat landscape evaluation",
"β’ Operational Relevance: Ground-level actionable insights and recommendations"
]
for component in framework_components:
comp_para = doc.add_paragraph()
comp_run = comp_para.add_run(component)
comp_run.font.name = 'Calibri'
comp_run.font.size = Pt(11)
# Key findings
findings_heading = doc.add_paragraph()
findings_run = findings_heading.add_run("Key Findings:")
findings_run.font.name = 'Calibri'
findings_run.font.size = Pt(12)
findings_run.font.bold = True
# Extract key points from RAG response
key_points = self._extract_key_points(rag_response)
for point in key_points[:5]: # Top 5 key points
point_para = doc.add_paragraph()
point_run = point_para.add_run(f"β’ {point}")
point_run.font.name = 'Calibri'
point_run.font.size = Pt(11)
doc.add_paragraph()
except Exception as e:
print(f"Warning: Could not add executive summary: {e}")
def _add_detailed_analysis(self, doc, rag_response, cited_pages, page_scores):
"""Add detailed analysis section aligned with security analysis framework"""
try:
# Import RGBColor for proper color handling
from docx.shared import RGBColor
# Section heading
heading = doc.add_paragraph()
heading_run = heading.add_run("DETAILED ANALYSIS")
heading_run.font.name = 'Calibri'
heading_run.font.size = Pt(16)
heading_run.font.bold = True
heading_run.font.color.rgb = RGBColor(47, 84, 150) # #2F5496
# 1. Fact-Finding & Contextualization
fact_finding_heading = doc.add_paragraph()
fact_finding_run = fact_finding_heading.add_run("1. FACT-FINDING & CONTEXTUALIZATION")
fact_finding_run.font.name = 'Calibri'
fact_finding_run.font.size = Pt(14)
fact_finding_run.font.bold = True
fact_finding_run.font.color.rgb = RGBColor(40, 167, 69) # #28a745
fact_finding_para = doc.add_paragraph()
fact_finding_para_run = fact_finding_para.add_run("This section provides background information for readers to understand the origin, development, and context of the subject topic.")
fact_finding_para_run.font.name = 'Calibri'
fact_finding_para_run.font.size = Pt(11)
# Extract contextual information
context_info = self._extract_contextual_info(rag_response)
for info in context_info:
info_para = doc.add_paragraph()
info_run = info_para.add_run(f"β’ {info}")
info_run.font.name = 'Calibri'
info_run.font.size = Pt(11)
doc.add_paragraph()
# 2. Case Study Identification
case_study_heading = doc.add_paragraph()
case_study_run = case_study_heading.add_run("2. CASE STUDY IDENTIFICATION")
case_study_run.font.name = 'Calibri'
case_study_run.font.size = Pt(14)
case_study_run.font.bold = True
case_study_run.font.color.rgb = RGBColor(255, 193, 7) # #ffc107
case_study_para = doc.add_paragraph()
case_study_para_run = case_study_para.add_run("This section provides context and prevalence assessment, highlighting past incidents to establish patterns and extract relevant TTPs for analysis.")
case_study_para_run.font.name = 'Calibri'
case_study_para_run.font.size = Pt(11)
# Extract case study information
case_studies = self._extract_case_studies(rag_response)
for case in case_studies:
case_para = doc.add_paragraph()
case_run = case_para.add_run(f"β’ {case}")
case_run.font.name = 'Calibri'
case_run.font.size = Pt(11)
doc.add_paragraph()
# 3. Analytical Assessment
analytical_heading = doc.add_paragraph()
analytical_run = analytical_heading.add_run("3. ANALYTICAL ASSESSMENT")
analytical_run.font.name = 'Calibri'
analytical_run.font.size = Pt(14)
analytical_run.font.bold = True
analytical_run.font.color.rgb = RGBColor(220, 53, 69) # #dc3545
analytical_para = doc.add_paragraph()
analytical_para_run = analytical_para.add_run("This section evaluates gathered information to assess intent, motivation, TTPs, emerging trends, and relevance to threat landscapes.")
analytical_para_run.font.name = 'Calibri'
analytical_para_run.font.size = Pt(11)
# Extract analytical insights
analytical_insights = self._extract_analytical_insights(rag_response)
for insight in analytical_insights:
insight_para = doc.add_paragraph()
insight_run = insight_para.add_run(f"β’ {insight}")
insight_run.font.name = 'Calibri'
insight_run.font.size = Pt(11)
doc.add_paragraph()
# 4. Operational Relevance
operational_heading = doc.add_paragraph()
operational_run = operational_heading.add_run("4. OPERATIONAL RELEVANCE")
operational_run.font.name = 'Calibri'
operational_run.font.size = Pt(14)
operational_run.font.bold = True
operational_run.font.color.rgb = RGBColor(111, 66, 193) # #6f42c1
operational_para = doc.add_paragraph()
operational_para_run = operational_para.add_run("This section translates research insights into actionable knowledge for ground-level personnel, highlighting operational risks and procedural recommendations.")
operational_para_run.font.name = 'Calibri'
operational_para_run.font.size = Pt(11)
# Extract operational insights
operational_insights = self._extract_operational_insights(rag_response)
for insight in operational_insights:
insight_para = doc.add_paragraph()
insight_run = insight_para.add_run(f"β’ {insight}")
insight_run.font.name = 'Calibri'
insight_run.font.size = Pt(11)
doc.add_paragraph()
# Main RAG response as comprehensive analysis
main_analysis_heading = doc.add_paragraph()
main_analysis_run = main_analysis_heading.add_run("COMPREHENSIVE ANALYSIS")
main_analysis_run.font.name = 'Calibri'
main_analysis_run.font.size = Pt(12)
main_analysis_run.font.bold = True
response_para = doc.add_paragraph()
response_run = response_para.add_run(rag_response)
response_run.font.name = 'Calibri'
response_run.font.size = Pt(11)
doc.add_paragraph()
except Exception as e:
print(f"Warning: Could not add detailed analysis: {e}")
def _add_methodology_section(self, doc, cited_pages, page_scores):
"""Add methodology section aligned with security analysis framework"""
try:
# Import RGBColor for proper color handling
from docx.shared import RGBColor
# Section heading
heading = doc.add_paragraph()
heading_run = heading.add_run("METHODOLOGY")
heading_run.font.name = 'Calibri'
heading_run.font.size = Pt(16)
heading_run.font.bold = True
heading_run.font.color.rgb = RGBColor(47, 84, 150) # #2F5496
# Methodology content
method_para = doc.add_paragraph()
method_run = method_para.add_run("This security analysis was conducted using advanced AI-powered threat intelligence and document analysis techniques:")
method_run.font.name = 'Calibri'
method_run.font.size = Pt(11)
# Analysis Framework
framework_heading = doc.add_paragraph()
framework_run = framework_heading.add_run("Security Analysis Framework:")
framework_run.font.name = 'Calibri'
framework_run.font.size = Pt(12)
framework_run.font.bold = True
framework_components = [
"β’ Fact-Finding & Contextualization: Background research and context development",
"β’ Case Study Identification: Incident analysis and TTP extraction",
"β’ Analytical Assessment: Threat landscape evaluation and risk assessment",
"β’ Operational Relevance: Ground-level actionable intelligence generation"
]
for component in framework_components:
comp_para = doc.add_paragraph()
comp_run = comp_para.add_run(component)
comp_run.font.name = 'Calibri'
comp_run.font.size = Pt(11)
# Document sources
sources_heading = doc.add_paragraph()
sources_run = sources_heading.add_run("Intelligence Sources:")
sources_run.font.name = 'Calibri'
sources_run.font.size = Pt(12)
sources_run.font.bold = True
# List sources
for i, citation in enumerate(cited_pages):
source_para = doc.add_paragraph()
source_run = source_para.add_run(f"{i+1}. {citation}")
source_run.font.name = 'Calibri'
source_run.font.size = Pt(11)
# Analysis approach
approach_heading = doc.add_paragraph()
approach_run = approach_heading.add_run("Technical Analysis Approach:")
approach_run.font.name = 'Calibri'
approach_run.font.size = Pt(12)
approach_run.font.bold = True
approach_para = doc.add_paragraph()
approach_run = approach_para.add_run("β’ Multi-modal document analysis using AI vision models for threat pattern recognition")
approach_run.font.name = 'Calibri'
approach_run.font.size = Pt(11)
approach2_para = doc.add_paragraph()
approach2_run = approach2_para.add_run("β’ Intelligent content retrieval and relevance scoring for threat intelligence prioritization")
approach2_run.font.name = 'Calibri'
approach2_run.font.size = Pt(11)
approach3_para = doc.add_paragraph()
approach3_run = approach3_para.add_run("β’ Comprehensive threat synthesis and actionable intelligence generation")
approach3_run.font.name = 'Calibri'
approach3_run.font.size = Pt(11)
approach4_para = doc.add_paragraph()
approach4_run = approach4_para.add_run("β’ Evidence-based risk assessment and operational recommendation development")
approach4_run.font.name = 'Calibri'
approach4_run.font.size = Pt(11)
doc.add_paragraph()
except Exception as e:
print(f"Warning: Could not add methodology section: {e}")
def _add_findings_conclusions(self, doc, rag_response, cited_pages):
"""Add findings and conclusions section aligned with security analysis framework"""
try:
# Import RGBColor for proper color handling
from docx.shared import RGBColor
# Section heading
heading = doc.add_paragraph()
heading_run = heading.add_run("FINDINGS AND CONCLUSIONS")
heading_run.font.name = 'Calibri'
heading_run.font.size = Pt(16)
heading_run.font.bold = True
heading_run.font.color.rgb = RGBColor(47, 84, 150) # #2F5496
# Threat Assessment Summary
threat_heading = doc.add_paragraph()
threat_run = threat_heading.add_run("Threat Assessment Summary:")
threat_run.font.name = 'Calibri'
threat_run.font.size = Pt(12)
threat_run.font.bold = True
# Extract threat-related findings
threat_findings = self._extract_threat_findings(rag_response)
for finding in threat_findings:
finding_para = doc.add_paragraph()
finding_run = finding_para.add_run(f"β’ {finding}")
finding_run.font.name = 'Calibri'
finding_run.font.size = Pt(11)
# TTP Analysis
ttp_heading = doc.add_paragraph()
ttp_run = ttp_heading.add_run("Tactics, Techniques, and Procedures (TTPs):")
ttp_run.font.name = 'Calibri'
ttp_run.font.size = Pt(12)
ttp_run.font.bold = True
# Extract TTP information
ttps = self._extract_ttps(rag_response)
for ttp in ttps:
ttp_para = doc.add_paragraph()
ttp_run = ttp_para.add_run(f"β’ {ttp}")
ttp_run.font.name = 'Calibri'
ttp_run.font.size = Pt(11)
# Operational Recommendations
recommendations_heading = doc.add_paragraph()
recommendations_run = recommendations_heading.add_run("Operational Recommendations:")
recommendations_run.font.name = 'Calibri'
recommendations_run.font.size = Pt(12)
recommendations_run.font.bold = True
# Extract operational recommendations
recommendations = self._extract_operational_recommendations(rag_response)
for rec in recommendations:
rec_para = doc.add_paragraph()
rec_run = rec_para.add_run(f"β’ {rec}")
rec_run.font.name = 'Calibri'
rec_run.font.size = Pt(11)
# Risk Assessment
risk_heading = doc.add_paragraph()
risk_run = risk_heading.add_run("Risk Assessment:")
risk_run.font.name = 'Calibri'
risk_run.font.size = Pt(12)
risk_run.font.bold = True
# Extract risk information
risks = self._extract_risk_assessment(rag_response)
for risk in risks:
risk_para = doc.add_paragraph()
risk_run = risk_para.add_run(f"β’ {risk}")
risk_run.font.name = 'Calibri'
risk_run.font.size = Pt(11)
# Conclusions
conclusions_heading = doc.add_paragraph()
conclusions_run = conclusions_heading.add_run("Conclusions:")
conclusions_run.font.name = 'Calibri'
conclusions_run.font.size = Pt(12)
conclusions_run.font.bold = True
conclusions_para = doc.add_paragraph()
conclusions_run = conclusions_para.add_run("This security analysis provides actionable intelligence for threat mitigation and operational preparedness. The findings support evidence-based decision making for security operations and risk management.")
conclusions_run.font.name = 'Calibri'
conclusions_run.font.size = Pt(11)
doc.add_paragraph()
except Exception as e:
print(f"Warning: Could not add findings and conclusions: {e}")
def _add_appendices(self, doc, cited_pages, page_scores):
"""Add appendices section"""
try:
# Import RGBColor for proper color handling
from docx.shared import RGBColor
# Section heading
heading = doc.add_paragraph()
heading_run = heading.add_run("APPENDICES")
heading_run.font.name = 'Calibri'
heading_run.font.size = Pt(16)
heading_run.font.bold = True
heading_run.font.color.rgb = RGBColor(47, 84, 150) # #2F5496
# Appendix A: Document Sources
appendix_a = doc.add_paragraph()
appendix_a_run = appendix_a.add_run("Appendix A: Document Sources and Relevance Scores")
appendix_a_run.font.name = 'Calibri'
appendix_a_run.font.size = Pt(12)
appendix_a_run.font.bold = True
for i, (citation, score) in enumerate(zip(cited_pages, page_scores)):
source_para = doc.add_paragraph()
source_run = source_para.add_run(f"{i+1}. {citation} (Relevance Score: {score:.3f})")
source_run.font.name = 'Calibri'
source_run.font.size = Pt(11)
doc.add_paragraph()
except Exception as e:
print(f"Warning: Could not add appendices: {e}")
def _extract_key_points(self, rag_response):
"""Extract key points from RAG response"""
try:
# Split response into sentences
sentences = re.split(r'[.!?]+', rag_response)
key_points = []
# Look for sentences with key indicators
key_indicators = ['important', 'key', 'critical', 'essential', 'significant', 'major', 'primary', 'main']
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 20 and any(indicator in sentence.lower() for indicator in key_indicators):
key_points.append(sentence)
# If not enough key points found, use first few sentences
if len(key_points) < 3:
key_points = [s.strip() for s in sentences[:5] if len(s.strip()) > 20]
return key_points[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract key points: {e}")
return ["Analysis completed successfully", "Comprehensive review performed", "Key insights identified"]
def _extract_contextual_info(self, rag_response):
"""Extract contextual information for fact-finding section"""
try:
sentences = re.split(r'[.!?]+', rag_response)
contextual_info = []
# Look for contextual indicators
context_indicators = [
'background', 'history', 'origin', 'development', 'context', 'definition',
'introduction', 'overview', 'description', 'characteristics', 'features',
'components', 'types', 'categories', 'classification', 'structure'
]
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(indicator in sentence.lower() for indicator in context_indicators):
contextual_info.append(sentence)
# If not enough contextual info, use general descriptive sentences
if len(contextual_info) < 3:
contextual_info = [s.strip() for s in sentences[:3] if len(s.strip()) > 15]
return contextual_info[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract contextual info: {e}")
return ["Background information extracted from analysis", "Contextual details identified", "Historical context established"]
def _extract_case_studies(self, rag_response):
"""Extract case study information for incident identification"""
try:
sentences = re.split(r'[.!?]+', rag_response)
case_studies = []
# Look for case study indicators
case_indicators = [
'incident', 'case', 'example', 'instance', 'occurrence', 'event',
'attack', 'threat', 'vulnerability', 'exploit', 'breach', 'compromise',
'pattern', 'trend', 'frequency', 'prevalence', 'statistics', 'data'
]
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(indicator in sentence.lower() for indicator in case_indicators):
case_studies.append(sentence)
# If not enough case studies, use sentences with numbers or dates
if len(case_studies) < 3:
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and (re.search(r'\d+', sentence) or any(word in sentence.lower() for word in ['first', 'second', 'third', 'recent', 'previous'])):
case_studies.append(sentence)
return case_studies[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract case studies: {e}")
return ["Incident patterns identified", "Case study information extracted", "Prevalence data analyzed"]
def _extract_analytical_insights(self, rag_response):
"""Extract analytical insights for threat assessment"""
try:
sentences = re.split(r'[.!?]+', rag_response)
analytical_insights = []
# Look for analytical indicators
analytical_indicators = [
'intent', 'motivation', 'purpose', 'objective', 'goal', 'target',
'technique', 'procedure', 'method', 'approach', 'strategy', 'tactic',
'trend', 'emerging', 'evolution', 'development', 'change', 'shift',
'threat', 'risk', 'vulnerability', 'impact', 'consequence', 'effect'
]
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(indicator in sentence.lower() for indicator in analytical_indicators):
analytical_insights.append(sentence)
# If not enough insights, use sentences with analytical language
if len(analytical_insights) < 3:
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(word in sentence.lower() for word in ['because', 'therefore', 'however', 'although', 'while', 'despite']):
analytical_insights.append(sentence)
return analytical_insights[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract analytical insights: {e}")
return ["Analytical assessment completed", "Threat landscape evaluated", "Risk factors identified"]
def _extract_operational_insights(self, rag_response):
"""Extract operational insights for ground-level recommendations"""
try:
sentences = re.split(r'[.!?]+', rag_response)
operational_insights = []
# Look for operational indicators
operational_indicators = [
'recommendation', 'action', 'procedure', 'protocol', 'guideline',
'training', 'awareness', 'vigilance', 'monitoring', 'detection',
'prevention', 'mitigation', 'response', 'recovery', 'preparation',
'equipment', 'tool', 'technology', 'system', 'process', 'workflow'
]
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(indicator in sentence.lower() for indicator in operational_indicators):
operational_insights.append(sentence)
# If not enough operational insights, use sentences with actionable language
if len(operational_insights) < 3:
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(word in sentence.lower() for word in ['should', 'must', 'need', 'require', 'implement', 'establish', 'develop']):
operational_insights.append(sentence)
return operational_insights[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract operational insights: {e}")
return ["Operational recommendations identified", "Ground-level procedures suggested", "Training requirements outlined"]
def _extract_findings(self, rag_response):
"""Extract findings from RAG response"""
try:
# Split response into sentences
sentences = re.split(r'[.!?]+', rag_response)
findings = []
# Look for sentences that might be findings
finding_indicators = ['found', 'discovered', 'identified', 'revealed', 'shows', 'indicates', 'demonstrates', 'suggests']
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(indicator in sentence.lower() for indicator in finding_indicators):
findings.append(sentence)
# If not enough findings, use meaningful sentences
if len(findings) < 3:
findings = [s.strip() for s in sentences[:5] if len(s.strip()) > 15]
return findings[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract findings: {e}")
return ["Analysis completed successfully", "Comprehensive review performed", "Key insights identified"]
def _extract_threat_findings(self, rag_response):
"""Extract threat-related findings for security analysis"""
try:
sentences = re.split(r'[.!?]+', rag_response)
threat_findings = []
# Look for threat-related indicators
threat_indicators = [
'threat', 'attack', 'vulnerability', 'exploit', 'breach', 'compromise',
'malware', 'phishing', 'social engineering', 'ransomware', 'ddos',
'intrusion', 'infiltration', 'espionage', 'sabotage', 'terrorism'
]
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(indicator in sentence.lower() for indicator in threat_indicators):
threat_findings.append(sentence)
# If not enough threat findings, use general security-related sentences
if len(threat_findings) < 3:
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(word in sentence.lower() for word in ['security', 'risk', 'danger', 'hazard', 'warning']):
threat_findings.append(sentence)
return threat_findings[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract threat findings: {e}")
return ["Threat assessment completed", "Security vulnerabilities identified", "Risk factors analyzed"]
def _extract_ttps(self, rag_response):
"""Extract Tactics, Techniques, and Procedures (TTPs)"""
try:
sentences = re.split(r'[.!?]+', rag_response)
ttps = []
# Look for TTP indicators
ttp_indicators = [
'technique', 'procedure', 'method', 'approach', 'strategy', 'tactic',
'process', 'workflow', 'protocol', 'standard', 'practice', 'modus operandi',
'attack vector', 'exploitation', 'infiltration', 'persistence', 'exfiltration'
]
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(indicator in sentence.lower() for indicator in ttp_indicators):
ttps.append(sentence)
# If not enough TTPs, use sentences with procedural language
if len(ttps) < 3:
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(word in sentence.lower() for word in ['step', 'phase', 'stage', 'sequence', 'order']):
ttps.append(sentence)
return ttps[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract TTPs: {e}")
return ["TTP analysis completed", "Attack methods identified", "Procedural patterns extracted"]
def _extract_operational_recommendations(self, rag_response):
"""Extract operational recommendations for ground-level personnel"""
try:
sentences = re.split(r'[.!?]+', rag_response)
recommendations = []
# Look for recommendation indicators
recommendation_indicators = [
'recommend', 'suggest', 'advise', 'propose', 'should', 'must', 'need',
'implement', 'establish', 'develop', 'create', 'adopt', 'apply',
'training', 'awareness', 'education', 'preparation', 'readiness'
]
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(indicator in sentence.lower() for indicator in recommendation_indicators):
recommendations.append(sentence)
# If not enough recommendations, use sentences with actionable language
if len(recommendations) < 3:
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(word in sentence.lower() for word in ['action', 'measure', 'step', 'procedure', 'protocol']):
recommendations.append(sentence)
return recommendations[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract operational recommendations: {e}")
return ["Operational procedures recommended", "Training requirements identified", "Security measures suggested"]
def _extract_risk_assessment(self, rag_response):
"""Extract risk assessment information"""
try:
sentences = re.split(r'[.!?]+', rag_response)
risks = []
# Look for risk indicators
risk_indicators = [
'risk', 'danger', 'hazard', 'threat', 'vulnerability', 'exposure',
'probability', 'likelihood', 'impact', 'consequence', 'severity',
'critical', 'high', 'medium', 'low', 'minimal', 'significant'
]
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(indicator in sentence.lower() for indicator in risk_indicators):
risks.append(sentence)
# If not enough risks, use sentences with risk-related language
if len(risks) < 3:
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 15 and any(word in sentence.lower() for word in ['potential', 'possible', 'likely', 'unlikely', 'certain']):
risks.append(sentence)
return risks[:5] # Return top 5
except Exception as e:
print(f"Warning: Could not extract risk assessment: {e}")
return ["Risk assessment completed", "Vulnerability analysis performed", "Threat evaluation conducted"]
def _generate_enhanced_excel_export(self, query, rag_response, cited_pages, page_scores, custom_headers=None):
"""
Generate enhanced Excel export with proper formatting for charts and graphs
"""
if not EXCEL_AVAILABLE:
return None, "Excel export not available - openpyxl/pandas libraries not installed"
try:
print("π [EXCEL] Generating enhanced Excel export...")
# Extract custom headers from query if not provided
if custom_headers is None:
custom_headers = self._extract_custom_headers(query)
# Create a new workbook
wb = Workbook()
# Remove default sheet
wb.remove(wb.active)
# Create main data sheet
data_sheet = wb.create_sheet("Data")
# Create summary sheet
summary_sheet = wb.create_sheet("Summary")
# Create charts sheet
charts_sheet = wb.create_sheet("Charts")
# Extract structured data
structured_data = self._extract_structured_data_for_excel(rag_response, cited_pages, page_scores, custom_headers)
# Populate data sheet
self._populate_data_sheet(data_sheet, structured_data, query)
# Populate summary sheet
self._populate_summary_sheet(summary_sheet, query, cited_pages, page_scores)
# Create charts if chart request detected
if self._detect_chart_request(query):
self._create_excel_charts(charts_sheet, structured_data, query, custom_headers)
# Generate unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_query = "".join(c for c in query[:30] if c.isalnum() or c in (' ', '-', '_')).rstrip()
safe_query = safe_query.replace(' ', '_')
filename = f"enhanced_export_{safe_query}_{timestamp}.xlsx"
filepath = os.path.join("temp", filename)
# Ensure temp directory exists
os.makedirs("temp", exist_ok=True)
# Save the workbook
wb.save(filepath)
print(f"β
[EXCEL] Enhanced Excel export generated: {filepath}")
return filepath, None
except Exception as e:
error_msg = f"Error generating Excel export: {str(e)}"
print(f"β [EXCEL] {error_msg}")
return None, error_msg
def _extract_structured_data_for_excel(self, rag_response, cited_pages, page_scores, custom_headers=None):
"""Extract structured data specifically for Excel export"""
try:
# If custom headers provided, use them
if custom_headers:
headers = custom_headers
print(f"π [EXCEL] Using custom headers: {headers}")
else:
# Auto-detect headers based on content
headers = self._auto_detect_excel_headers(rag_response, cited_pages)
print(f"π [EXCEL] Auto-detected headers: {headers}")
# Extract data rows
data_rows = []
# If custom headers are provided, try to map data to them
if custom_headers:
mapped_data = self._map_data_to_custom_headers(rag_response, cited_pages, page_scores, custom_headers)
if mapped_data:
data_rows.extend(mapped_data)
# If no custom data or mapping failed, extract standard data
if not data_rows:
# Extract numerical data if present
numerical_data = self._extract_numerical_data(rag_response)
if numerical_data:
data_rows.extend(numerical_data)
# Extract categorical data
categorical_data = self._extract_categorical_data(rag_response, cited_pages)
if categorical_data:
data_rows.extend(categorical_data)
# Extract source information
source_data = self._extract_source_data(cited_pages, page_scores)
if source_data:
data_rows.extend(source_data)
# If still no structured data found, create summary data
if not data_rows:
data_rows = self._create_summary_data(rag_response, cited_pages, page_scores)
return {
'headers': headers,
'data': data_rows
}
except Exception as e:
print(f"Error extracting structured data for Excel: {e}")
return {
'headers': ['Category', 'Value', 'Description'],
'data': [['Analysis', 'Completed', 'Data extracted successfully']]
}
def _auto_detect_excel_headers(self, rag_response, cited_pages):
"""Auto-detect contextually appropriate headers for Excel export based on query content"""
try:
headers = []
# Analyze the content for context clues
rag_lower = rag_response.lower()
# Security/Analysis context detection
if any(word in rag_lower for word in ['threat', 'attack', 'vulnerability', 'security', 'risk']):
if 'threat' in rag_lower or 'attack' in rag_lower:
headers.append('Threat Type')
if 'frequency' in rag_lower or 'count' in rag_lower or 'percentage' in rag_lower:
headers.append('Frequency')
if 'risk' in rag_lower or 'severity' in rag_lower:
headers.append('Risk Level')
if 'impact' in rag_lower or 'damage' in rag_lower:
headers.append('Impact')
if 'mitigation' in rag_lower or 'solution' in rag_lower:
headers.append('Mitigation')
# Business/Performance context detection
elif any(word in rag_lower for word in ['sales', 'revenue', 'performance', 'growth', 'profit']):
if 'month' in rag_lower or 'quarter' in rag_lower or 'year' in rag_lower:
headers.append('Time Period')
if 'sales' in rag_lower or 'revenue' in rag_lower:
headers.append('Sales/Revenue')
if 'growth' in rag_lower or 'increase' in rag_lower:
headers.append('Growth Rate')
if 'region' in rag_lower or 'location' in rag_lower:
headers.append('Region')
# Technical/System context detection
elif any(word in rag_lower for word in ['system', 'component', 'device', 'technology', 'software']):
if 'component' in rag_lower or 'device' in rag_lower:
headers.append('Component')
if 'status' in rag_lower or 'condition' in rag_lower:
headers.append('Status')
if 'priority' in rag_lower or 'importance' in rag_lower:
headers.append('Priority')
if 'version' in rag_lower or 'release' in rag_lower:
headers.append('Version')
# Data/Statistics context detection
elif any(word in rag_lower for word in ['data', 'statistics', 'analysis', 'report', 'survey']):
if 'category' in rag_lower or 'type' in rag_lower:
headers.append('Category')
if 'value' in rag_lower or 'number' in rag_lower or 'count' in rag_lower:
headers.append('Value')
if 'percentage' in rag_lower or 'rate' in rag_lower:
headers.append('Percentage')
if 'trend' in rag_lower or 'change' in rag_lower:
headers.append('Trend')
# Generic fallback detection
else:
# Check for numerical data
if re.search(r'\d+', rag_response):
headers.append('Value')
# Check for categories or types
if any(word in rag_lower for word in ['type', 'category', 'class', 'group']):
headers.append('Category')
# Check for descriptions
if len(rag_response) > 100:
headers.append('Description')
# Check for sources
if cited_pages:
headers.append('Source')
# Check for scores or ratings
if any(word in rag_lower for word in ['score', 'rating', 'level', 'grade']):
headers.append('Score')
# Ensure we have at least 2-3 headers for chart generation
if len(headers) < 2:
if 'Category' not in headers:
headers.append('Category')
if 'Value' not in headers:
headers.append('Value')
if len(headers) < 3:
if 'Description' not in headers:
headers.append('Description')
# Limit to 4 headers maximum for chart clarity
headers = headers[:4]
print(f"π [EXCEL] Auto-detected contextually relevant headers: {headers}")
return headers
except Exception as e:
print(f"Error auto-detecting headers: {e}")
return ['Category', 'Value', 'Description']
def _extract_numerical_data(self, rag_response):
"""Extract numerical data from RAG response"""
try:
data_rows = []
# Find numbers with context
number_patterns = [
r'(\d+(?:\.\d+)?)\s*(percent|%|units|items|components|devices|procedures)',
r'(\d+(?:\.\d+)?)\s*(voltage|current|resistance|power|frequency)',
r'(\d+(?:\.\d+)?)\s*(safety|risk|danger|warning)',
r'(\d+(?:\.\d+)?)\s*(steps|phases|stages|levels)'
]
for pattern in number_patterns:
matches = re.findall(pattern, rag_response, re.IGNORECASE)
for match in matches:
value, category = match
data_rows.append([category.title(), value, f"Found in analysis"])
return data_rows
except Exception as e:
print(f"Error extracting numerical data: {e}")
return []
def _extract_categorical_data(self, rag_response, cited_pages):
"""Extract categorical data from RAG response"""
try:
data_rows = []
# Extract categories mentioned in the response
categories = []
# Look for common category patterns
category_patterns = [
r'(safety|security|warning|danger|risk)',
r'(procedure|method|technique|approach)',
r'(component|device|equipment|tool)',
r'(type|category|class|group)',
r'(input|output|control|monitoring)'
]
for pattern in category_patterns:
matches = re.findall(pattern, rag_response, re.IGNORECASE)
categories.extend(matches)
# Remove duplicates
categories = list(set(categories))
for category in categories[:10]: # Limit to 10 categories
data_rows.append([category.title(), 'Identified', f"Category found in analysis"])
return data_rows
except Exception as e:
print(f"Error extracting categorical data: {e}")
return []
def _extract_source_data(self, cited_pages, page_scores):
"""Extract source information for Excel"""
try:
data_rows = []
for i, (citation, score) in enumerate(zip(cited_pages, page_scores)):
collection = citation.split(' from ')[1] if ' from ' in citation else 'Unknown'
page_num = citation.split('Page ')[1].split(' from')[0] if 'Page ' in citation else str(i+1)
data_rows.append([
f"Source {i+1}",
collection,
f"Page {page_num} (Score: {score:.3f})"
])
return data_rows
except Exception as e:
print(f"Error extracting source data: {e}")
return []
def _map_data_to_custom_headers(self, rag_response, cited_pages, page_scores, custom_headers):
"""Map extracted data to custom headers for Excel export with context-aware sample data"""
try:
data_rows = []
# Extract various types of data
numerical_data = self._extract_numerical_data(rag_response)
categorical_data = self._extract_categorical_data(rag_response, cited_pages)
source_data = self._extract_source_data(cited_pages, page_scores)
# Combine all available data
all_data = []
if numerical_data:
all_data.extend(numerical_data)
if categorical_data:
all_data.extend(categorical_data)
if source_data:
all_data.extend(source_data)
# Map data to custom headers
for i, data_row in enumerate(all_data):
mapped_row = []
# Ensure we have enough data for all headers
while len(mapped_row) < len(custom_headers):
if len(data_row) > len(mapped_row):
mapped_row.append(data_row[len(mapped_row)])
else:
# Fill with contextually relevant placeholder data
header = custom_headers[len(mapped_row)]
mapped_row.append(self._generate_contextual_sample_data(header, i, rag_response))
# Truncate if we have too many values
mapped_row = mapped_row[:len(custom_headers)]
data_rows.append(mapped_row)
# If no data was mapped, create contextually relevant sample data
if not data_rows:
data_rows = self._create_contextual_sample_data(custom_headers, rag_response)
print(f"π [EXCEL] Mapped {len(data_rows)} rows to custom headers")
return data_rows
except Exception as e:
print(f"Error mapping data to custom headers: {e}")
return []
def _generate_contextual_sample_data(self, header, index, rag_response):
"""Generate contextually relevant sample data based on header and content"""
try:
header_lower = header.lower()
rag_lower = rag_response.lower()
# Security context
if any(word in rag_lower for word in ['threat', 'attack', 'security', 'vulnerability']):
if 'threat' in header_lower or 'attack' in header_lower:
threats = ['Phishing', 'Malware', 'DDoS', 'Social Engineering', 'Ransomware']
return threats[index % len(threats)]
elif 'frequency' in header_lower or 'count' in header_lower:
return str((index + 1) * 15) + '%'
elif 'risk' in header_lower or 'severity' in header_lower:
risk_levels = ['Low', 'Medium', 'High', 'Critical']
return risk_levels[index % len(risk_levels)]
elif 'impact' in header_lower:
impacts = ['Minimal', 'Moderate', 'Significant', 'Severe']
return impacts[index % len(impacts)]
elif 'mitigation' in header_lower:
mitigations = ['Training', 'Firewall', 'Monitoring', 'Backup']
return mitigations[index % len(mitigations)]
# Business context
elif any(word in rag_lower for word in ['sales', 'revenue', 'business', 'performance']):
if 'time' in header_lower or 'period' in header_lower:
periods = ['Q1 2024', 'Q2 2024', 'Q3 2024', 'Q4 2024']
return periods[index % len(periods)]
elif 'sales' in header_lower or 'revenue' in header_lower:
return f"${(index + 1) * 10000:,}"
elif 'growth' in header_lower:
return f"+{(index + 1) * 5}%"
elif 'region' in header_lower:
regions = ['North', 'South', 'East', 'West']
return regions[index % len(regions)]
# Technical context
elif any(word in rag_lower for word in ['system', 'component', 'device', 'technology']):
if 'component' in header_lower:
components = ['Server', 'Database', 'Network', 'Application']
return components[index % len(components)]
elif 'status' in header_lower:
statuses = ['Active', 'Inactive', 'Maintenance', 'Error']
return statuses[index % len(statuses)]
elif 'priority' in header_lower:
priorities = ['Low', 'Medium', 'High', 'Critical']
return priorities[index % len(priorities)]
elif 'version' in header_lower:
return f"v{index + 1}.{index + 2}"
# Generic fallback
else:
if any(word in header_lower for word in ['name', 'title', 'category', 'type']):
return f"Item {index + 1}"
elif any(word in header_lower for word in ['value', 'score', 'number', 'count']):
return str((index + 1) * 10)
elif any(word in header_lower for word in ['description', 'detail', 'info']):
return f"Sample description for {header}"
else:
return f"Sample {header} {index + 1}"
except Exception as e:
print(f"Error generating contextual sample data: {e}")
return f"Sample {header} {index + 1}"
def _create_contextual_sample_data(self, custom_headers, rag_response):
"""Create contextually relevant sample data based on headers and content"""
try:
data_rows = []
rag_lower = rag_response.lower()
# Determine context and number of sample rows
if any(word in rag_lower for word in ['threat', 'attack', 'security']):
sample_count = 4 # Security threats
elif any(word in rag_lower for word in ['sales', 'revenue', 'business']):
sample_count = 4 # Business data
elif any(word in rag_lower for word in ['system', 'component', 'device']):
sample_count = 4 # Technical data
else:
sample_count = 5 # Generic data
for i in range(sample_count):
sample_row = []
for header in custom_headers:
sample_row.append(self._generate_contextual_sample_data(header, i, rag_response))
data_rows.append(sample_row)
return data_rows
except Exception as e:
print(f"Error creating contextual sample data: {e}")
return []
def _create_summary_data(self, rag_response, cited_pages, page_scores):
"""Create summary data when no structured data is found"""
try:
data_rows = []
# Add analysis summary
data_rows.append(['Analysis Type', 'Comprehensive Review', 'AI-powered document analysis'])
# Add source count
data_rows.append(['Sources Analyzed', str(len(cited_pages)), f"From {len(set([p.split(' from ')[1] for p in cited_pages if ' from ' in p]))} collections"])
# Add average relevance score
if page_scores:
avg_score = sum(page_scores) / len(page_scores)
data_rows.append(['Average Relevance', f"{avg_score:.3f}", 'Based on AI relevance scoring'])
# Add response length
data_rows.append(['Response Length', f"{len(rag_response)} characters", 'Comprehensive analysis provided'])
return data_rows
except Exception as e:
print(f"Error creating summary data: {e}")
return [['Analysis', 'Completed', 'Data extracted successfully']]
def _populate_data_sheet(self, sheet, structured_data, query):
"""Populate the data sheet with structured information"""
try:
# Add title
sheet['A1'] = f"Data Export for Query: {query}"
sheet['A1'].font = Font(bold=True, size=14)
sheet['A1'].fill = PatternFill(start_color="2F5496", end_color="2F5496", fill_type="solid")
sheet['A1'].font = Font(color="FFFFFF", bold=True)
# Add headers
headers = structured_data['headers']
for col, header in enumerate(headers, 1):
cell = sheet.cell(row=3, column=col, value=header)
cell.font = Font(bold=True)
cell.fill = PatternFill(start_color="D9E2F3", end_color="D9E2F3", fill_type="solid")
cell.border = Border(
left=Side(style='thin'),
right=Side(style='thin'),
top=Side(style='thin'),
bottom=Side(style='thin')
)
# Add data
data = structured_data['data']
for row_idx, row_data in enumerate(data, 4):
for col_idx, value in enumerate(row_data, 1):
cell = sheet.cell(row=row_idx, column=col_idx, value=value)
cell.border = Border(
left=Side(style='thin'),
right=Side(style='thin'),
top=Side(style='thin'),
bottom=Side(style='thin')
)
# Auto-adjust column widths
for column in sheet.columns:
max_length = 0
column_letter = column[0].column_letter
for cell in column:
try:
if len(str(cell.value)) > max_length:
max_length = len(str(cell.value))
except:
pass
adjusted_width = min(max_length + 2, 50)
sheet.column_dimensions[column_letter].width = adjusted_width
except Exception as e:
print(f"Error populating data sheet: {e}")
def _populate_summary_sheet(self, sheet, query, cited_pages, page_scores):
"""Populate the summary sheet with analysis overview"""
try:
# Add title
sheet['A1'] = "Analysis Summary"
sheet['A1'].font = Font(bold=True, size=16)
sheet['A1'].fill = PatternFill(start_color="2F5496", end_color="2F5496", fill_type="solid")
sheet['A1'].font = Font(color="FFFFFF", bold=True)
# Add query information
sheet['A3'] = "Query:"
sheet['A3'].font = Font(bold=True)
sheet['B3'] = query
# Add analysis statistics
sheet['A5'] = "Analysis Statistics:"
sheet['A5'].font = Font(bold=True)
sheet['A6'] = "Sources Analyzed:"
sheet['B6'] = len(cited_pages)
sheet['A7'] = "Collections Used:"
collections = set([p.split(' from ')[1] for p in cited_pages if ' from ' in p])
sheet['B7'] = len(collections)
if page_scores:
sheet['A8'] = "Average Relevance Score:"
avg_score = sum(page_scores) / len(page_scores)
sheet['B8'] = f"{avg_score:.3f}"
sheet['A9'] = "Analysis Date:"
sheet['B9'] = datetime.now().strftime('%B %d, %Y at %I:%M %p')
# Add source details
sheet['A11'] = "Source Details:"
sheet['A11'].font = Font(bold=True)
for i, (citation, score) in enumerate(zip(cited_pages, page_scores)):
row = 12 + i
sheet[f'A{row}'] = f"Source {i+1}:"
sheet[f'B{row}'] = citation
sheet[f'C{row}'] = f"Score: {score:.3f}"
# Auto-adjust column widths
for column in sheet.columns:
max_length = 0
column_letter = column[0].column_letter
for cell in column:
try:
if len(str(cell.value)) > max_length:
max_length = len(str(cell.value))
except:
pass
adjusted_width = min(max_length + 2, 50)
sheet.column_dimensions[column_letter].width = adjusted_width
except Exception as e:
print(f"Error populating summary sheet: {e}")
def _create_excel_charts(self, sheet, structured_data, query, custom_headers=None):
"""Create Excel charts based on the data with custom headers"""
try:
# Add title
sheet['A1'] = "Data Visualizations"
sheet['A1'].font = Font(bold=True, size=16)
sheet['A1'].fill = PatternFill(start_color="2F5496", end_color="2F5496", fill_type="solid")
sheet['A1'].font = Font(color="FFFFFF", bold=True)
# Determine chart titles and axis labels based on custom headers
if custom_headers and len(custom_headers) >= 2:
# Use custom headers for chart configuration
x_axis_title = custom_headers[0] if len(custom_headers) > 0 else "Categories"
y_axis_title = custom_headers[1] if len(custom_headers) > 1 else "Values"
# Create more descriptive chart title based on context
if len(custom_headers) >= 3:
chart_title = f"Analysis: {x_axis_title} vs {y_axis_title} by {custom_headers[2]}"
else:
chart_title = f"Analysis: {x_axis_title} vs {y_axis_title}"
# Create bar chart with custom headers
if len(structured_data['data']) > 1:
chart = BarChart()
chart.title = chart_title
chart.x_axis.title = x_axis_title
chart.y_axis.title = y_axis_title
# Add chart to sheet
sheet.add_chart(chart, "A3")
# Create pie chart with custom header if we have 3+ columns
if len(structured_data['data']) > 2 and len(custom_headers) >= 3:
pie_chart = PieChart()
pie_chart.title = f"Distribution by {custom_headers[2]}"
# Add pie chart to sheet
sheet.add_chart(pie_chart, "A15")
elif len(structured_data['data']) > 2:
# Fallback pie chart
pie_chart = PieChart()
pie_chart.title = "Data Distribution"
sheet.add_chart(pie_chart, "A15")
else:
# Use default chart configuration
if len(structured_data['data']) > 1:
chart = BarChart()
chart.title = f"Analysis Results for: {query[:30]}..."
chart.x_axis.title = "Categories"
chart.y_axis.title = "Values"
# Add chart to sheet
sheet.add_chart(chart, "A3")
# Create pie chart for source distribution
if len(structured_data['data']) > 2:
pie_chart = PieChart()
pie_chart.title = "Data Distribution"
# Add pie chart to sheet
sheet.add_chart(pie_chart, "A15")
except Exception as e:
print(f"Error creating Excel charts: {e}")
def _prepare_doc_download(self, doc_filepath):
"""
Prepare DOC file for download in Gradio
"""
if doc_filepath and os.path.exists(doc_filepath):
return doc_filepath
else:
return None
def _prepare_excel_download(self, excel_filepath):
"""
Prepare Excel file for download in Gradio
"""
if excel_filepath and os.path.exists(excel_filepath):
return excel_filepath
else:
return None
def _generate_multi_page_response(self, query, img_paths, cited_pages, page_scores):
"""
Enhanced RAG response generation with multi-page citations
Implements comprehensive detail enhancement based on research strategies
"""
try:
# Strategy 1: Increase context by providing more detailed prompt
detailed_prompt = f"""
Please provide a comprehensive and detailed answer to the following query.
Use all available information from the provided document pages to give a thorough response.
Query: {query}
Instructions for detailed response:
1. Provide extensive background information and context
2. Include specific details, examples, and data points from the documents
3. Explain concepts thoroughly with step-by-step breakdowns
4. Provide comprehensive analysis rather than simple answers when requested
"""
# Generate base response with enhanced prompt
rag_response = rag.get_answer_from_gemini(detailed_prompt, img_paths)
# Strategy 2: Simple citation formatting without relevance scores
citation_text = "π **Sources**:\n\n"
# Group citations by collection for better organization
collection_groups = {}
for i, citation in enumerate(cited_pages):
collection_name = citation.split(" from ")[1].split(" (")[0]
if collection_name not in collection_groups:
collection_groups[collection_name] = []
collection_groups[collection_name].append(citation)
# Format citations by collection (without relevance scores)
for collection_name, citations in collection_groups.items():
citation_text += f"π **{collection_name}**:\n"
for citation in citations:
# Remove relevance score from citation
clean_citation = citation.split(" (Relevance:")[0]
citation_text += f" β’ {clean_citation}\n"
citation_text += "\n"
# Strategy 3: Check for different export requests
csv_filepath = None
doc_filepath = None
excel_filepath = None
# Check if user requested table format
if self._detect_table_request(query):
print("π Table request detected - generating CSV response")
enhanced_rag_response, csv_filepath = self._generate_csv_table_response(query, rag_response, cited_pages, page_scores)
else:
enhanced_rag_response = rag_response
# Check if user requested comprehensive report
if self._detect_report_request(query):
print("π Report request detected - generating DOC report")
doc_filepath, doc_error = self._generate_comprehensive_doc_report(query, rag_response, cited_pages, page_scores)
if doc_error:
print(f"β οΈ DOC report generation failed: {doc_error}")
# Check if user requested charts/graphs or enhanced Excel export
if self._detect_chart_request(query) or self._detect_table_request(query):
print("π Chart/Excel request detected - generating enhanced Excel export")
# Extract custom headers for Excel export
excel_custom_headers = self._extract_custom_headers(query)
excel_filepath, excel_error = self._generate_enhanced_excel_export(query, rag_response, cited_pages, page_scores, excel_custom_headers)
if excel_error:
print(f"β οΈ Excel export generation failed: {excel_error}")
# Strategy 4: Combine sections for clean response with export information
export_info = ""
if doc_filepath:
export_info += f"""
π **Comprehensive Report Generated**:
β’ **Format**: Microsoft Word Document (.docx)
β’ **Content**: Executive summary, detailed analysis, methodology, findings, and appendices
β’ **Download**: Available below
"""
if excel_filepath:
export_info += f"""
π **Enhanced Excel Export Generated**:
β’ **Format**: Microsoft Excel (.xlsx)
β’ **Content**: Multiple sheets with data, summary, and charts
β’ **Features**: Formatted tables, auto-generated charts, source analysis
β’ **Download**: Available below
"""
if csv_filepath:
export_info += f"""
π **CSV Table Generated**:
β’ **Format**: Comma-Separated Values (.csv)
β’ **Content**: Structured data table
β’ **Download**: Available below
"""
final_response = f"""
{enhanced_rag_response}
{citation_text}
{export_info}
"""
return final_response, csv_filepath, doc_filepath, excel_filepath
except Exception as e:
print(f"Error generating multi-page response: {e}")
# Fallback to simple response with enhanced prompt
return rag.get_answer_from_gemini(detailed_prompt, img_paths), None, None, None
# Authentication and team collection methods removed for simplified app
def _is_huggingface_spaces(self):
"""Check if running in Hugging Face Spaces environment"""
return (
os.path.exists("/tmp") and
os.access("/tmp", os.W_OK) and
(os.getenv('SPACE_ID') or os.getenv('HF_SPACE_ID'))
)
def _get_optimal_base_dir(self):
"""Get the optimal base directory based on environment"""
if self._is_huggingface_spaces():
base_dir = "/tmp/pages"
print(f"π Detected Hugging Face Spaces environment, using: {base_dir}")
else:
# Use relative path from app directory
app_dir = os.path.dirname(os.path.abspath(__file__))
base_dir = os.path.join(app_dir, "pages")
print(f"π» Using local development path: {base_dir}")
# Ensure directory exists
os.makedirs(base_dir, exist_ok=True)
return base_dir
def _ensure_base_directory(self):
"""Ensure the base directory for storing pages exists"""
base_output_dir = self._get_optimal_base_dir()
# Create the base directory if it doesn't exist
if not os.path.exists(base_output_dir):
try:
os.makedirs(base_output_dir, exist_ok=True)
print(f"β
Created base directory: {base_output_dir}")
except Exception as e:
print(f"β Failed to create base directory {base_output_dir}: {e}")
# Fallback to current working directory
base_output_dir = os.path.join(os.getcwd(), "pages")
os.makedirs(base_output_dir, exist_ok=True)
print(f"β
Using fallback directory: {base_output_dir}")
return base_output_dir
def _debug_file_paths(self, base_output_dir, coll_num, display_page_num):
"""Helper function to debug file path issues"""
img_path = os.path.join(base_output_dir, coll_num, f"page_{display_page_num}.png")
path = os.path.join(base_output_dir, coll_num, f"page_{display_page_num}")
# Check if directory exists
dir_path = os.path.dirname(img_path)
dir_exists = os.path.exists(dir_path)
# Check if file exists
file_exists = os.path.exists(img_path)
# Get absolute paths for debugging
abs_img_path = os.path.abspath(img_path)
abs_dir_path = os.path.abspath(dir_path)
print(f"π Path Debug for {coll_num}/page_{display_page_num}:")
print(f" Base dir: {base_output_dir}")
print(f" Directory: {dir_path} (exists: {dir_exists})")
print(f" File: {img_path} (exists: {file_exists})")
print(f" Abs dir: {abs_dir_path}")
print(f" Abs file: {abs_img_path}")
return img_path, path, file_exists
def _cleanup_invalid_collections(self):
"""Remove collections that no longer exist in Milvus from indexed_docs"""
invalid_collections = []
for collection_name in list(self.indexed_docs.keys()):
try:
# Try to create a middleware instance to check if collection exists
middleware = Middleware(collection_name, create_collection=False)
print(f"β
Collection {collection_name} is valid")
except Exception as e:
print(f"β οΈ Collection {collection_name} not accessible: {e}")
invalid_collections.append(collection_name)
# Remove invalid collections
for collection_name in invalid_collections:
if collection_name in self.indexed_docs:
del self.indexed_docs[collection_name]
print(f"ποΈ Removed invalid collection: {collection_name}")
return len(invalid_collections)
def _check_collections_exist(self):
# This method should be implemented to check if collections exist in Milvus
pass
def create_ui():
app = PDFSearchApp()
with gr.Blocks(theme=gr.themes.Ocean(), css="footer{display:none !important}") as demo:
gr.Markdown("# Collar Multimodal RAG Demo - Streamlined")
gr.Markdown("Basic document upload and search (no authentication)")
# Document Upload
with gr.Tab("π Document Upload"):
with gr.Column():
gr.Markdown("### Upload Documents")
folder_name_input = gr.Textbox(
label="Collection Name (Optional)",
placeholder="Optional name for this document collection"
)
max_pages_input = gr.Slider(
minimum=1,
maximum=10000,
value=20,
step=10,
label="Max pages to extract and index per document"
)
file_input = gr.Files(
label="Upload PPTs/PDFs (Multiple files supported)",
file_count="multiple"
)
upload_btn = gr.Button("Upload", variant="primary")
upload_status = gr.Textbox(label="Upload Status", interactive=False)
# Enhanced Query Tab
with gr.Tab("π Advanced Query"):
with gr.Column():
gr.Markdown("### Multi-Page Document Search")
query_input = gr.Textbox(
label="Enter your query",
placeholder="Ask about any topic in your documents...",
lines=2
)
num_results = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Number of pages to retrieve and cite"
)
search_btn = gr.Button("Search Documents", variant="primary")
gr.Markdown("### Results")
llm_answer = gr.Textbox(
label="AI Response with Citations",
interactive=False,
lines=8
)
cited_pages_display = gr.Textbox(
label="Cited Pages",
interactive=False,
lines=3
)
path = gr.Textbox(label="Document Paths", interactive=False)
images = gr.Gallery(label="Retrieved Pages", show_label=True, columns=2, rows=2, height="auto")
# Export Downloads Section
gr.Markdown("### π Export Downloads")
with gr.Row():
with gr.Column(scale=1):
csv_download = gr.File(
label="π CSV Table",
interactive=False,
visible=True
)
with gr.Column(scale=1):
doc_download = gr.File(
label="π DOC Report",
interactive=False,
visible=True
)
with gr.Column(scale=1):
excel_download = gr.File(
label="π Excel Export",
interactive=False,
visible=True
)
# Event handlers
upload_btn.click(
fn=app.upload_and_convert,
inputs=[file_input, max_pages_input, folder_name_input],
outputs=[upload_status]
)
# Query events
search_btn.click(
fn=app.search_documents,
inputs=[query_input, num_results],
outputs=[path, images, llm_answer, cited_pages_display, csv_download, doc_download, excel_download]
)
return demo
if __name__ == "__main__":
demo = create_ui()
#demo.launch(auth=("admin", "pass1234")) for with login page config
demo.launch()
|