Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,957 Bytes
0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 0400df3 d901124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from pymilvus import MilvusClient, DataType
import numpy as np
import concurrent.futures
class MilvusManager:
def __init__(self, milvus_uri, collection_name, create_collection, dim=128):
self.client = MilvusClient(uri=milvus_uri)
self.collection_name = collection_name
if self.client.has_collection(collection_name=self.collection_name):
self.client.load_collection(collection_name)
self.dim = dim
if create_collection:
self.create_collection()
self.create_index()
def create_collection(self):
if self.client.has_collection(collection_name=self.collection_name):
self.client.drop_collection(collection_name=self.collection_name)
schema = self.client.create_schema(
auto_id=True,
enable_dynamic_fields=True,
)
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)
schema.add_field(
field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=self.dim
)
schema.add_field(field_name="seq_id", datatype=DataType.INT16)
schema.add_field(field_name="doc_id", datatype=DataType.INT64)
schema.add_field(field_name="doc", datatype=DataType.VARCHAR, max_length=65535)
self.client.create_collection(
collection_name=self.collection_name, schema=schema
)
def create_index(self):
self.client.release_collection(collection_name=self.collection_name)
self.client.drop_index(
collection_name=self.collection_name, index_name="vector"
)
index_params = self.client.prepare_index_params()
index_params.add_index(
field_name="vector",
index_name="vector_index",
index_type="FLAT",
metric_type="IP",
params={
"M": 16,
"efConstruction": 500,
},
)
self.client.create_index(
collection_name=self.collection_name, index_params=index_params, sync=True
)
def create_scalar_index(self):
self.client.release_collection(collection_name=self.collection_name)
index_params = self.client.prepare_index_params()
index_params.add_index(
field_name="doc_id",
index_name="int32_index",
index_type="INVERTED",
)
self.client.create_index(
collection_name=self.collection_name, index_params=index_params, sync=True
)
def search(self, data, topk):
search_params = {"metric_type": "IP", "params": {}}
results = self.client.search(
self.collection_name,
data,
limit=int(50),
output_fields=["vector", "seq_id", "doc_id"],
search_params=search_params,
)
doc_ids = set()
for r_id in range(len(results)):
for r in range(len(results[r_id])):
doc_ids.add(results[r_id][r]["entity"]["doc_id"])
scores = []
def rerank_single_doc(doc_id, data, client, collection_name):
doc_colbert_vecs = client.query(
collection_name=collection_name,
filter=f"doc_id in [{doc_id}, {doc_id + 1}]",
output_fields=["seq_id", "vector", "doc"],
limit=1000,
)
doc_vecs = np.vstack(
[doc_colbert_vecs[i]["vector"] for i in range(len(doc_colbert_vecs))]
)
score = np.dot(data, doc_vecs.T).max(1).sum()
return (score, doc_id)
with concurrent.futures.ThreadPoolExecutor(max_workers=300) as executor:
futures = {
executor.submit(
rerank_single_doc, doc_id, data, self.client, self.collection_name
): doc_id
for doc_id in doc_ids
}
for future in concurrent.futures.as_completed(futures):
score, doc_id = future.result()
scores.append((score, doc_id))
scores.sort(key=lambda x: x[0], reverse=True)
# π DETAILED SCORE LOGGING - Print page numbers with highest scores
print("\n" + "="*80)
print("π RETRIEVAL SCORES - PAGE NUMBERS WITH HIGHEST SCORES")
print("="*80)
print(f"π Collection: {self.collection_name}")
print(f"π Total documents found: {len(scores)}")
print(f"π― Requested top-k: {topk}")
print("-"*80)
# Display top 10 scores with detailed information
display_count = min(10, len(scores))
for i, (score, doc_id) in enumerate(scores[:display_count]):
page_num = doc_id + 1 # Convert doc_id to page number (0-based to 1-based)
relevance_level = self._get_relevance_level(score)
print(f"π Page {page_num:2d} (doc_id: {doc_id:2d}) | Score: {score:8.4f} | {relevance_level}")
if len(scores) > display_count:
print(f"... and {len(scores) - display_count} more results")
print("-"*80)
print(f"π HIGHEST SCORING PAGES:")
top_3 = scores[:3]
for i, (score, doc_id) in enumerate(top_3, 1):
page_num = doc_id + 1
print(f" {i}. Page {page_num} - Score: {score:.4f}")
print("="*80 + "\n")
if len(scores) >= topk:
return scores[:topk]
else:
return scores
def _get_relevance_level(self, score):
"""Get human-readable relevance level based on score"""
if score >= 0.90:
return "π’ EXCELLENT - Highly relevant"
elif score >= 0.80:
return "π‘ VERY GOOD - Very relevant"
elif score >= 0.70:
return "π GOOD - Relevant"
elif score >= 0.60:
return "π΅ MODERATE - Somewhat relevant"
elif score >= 0.50:
return "π£ BASIC - Minimally relevant"
else:
return "π΄ POOR - Not relevant"
def insert(self, data):
colbert_vecs = [vec for vec in data["colbert_vecs"]]
seq_length = len(colbert_vecs)
doc_ids = [data["doc_id"] for i in range(seq_length)]
seq_ids = list(range(seq_length))
docs = [""] * seq_length
docs[0] = data["filepath"]
self.client.insert(
self.collection_name,
[
{
"vector": colbert_vecs[i],
"seq_id": seq_ids[i],
"doc_id": doc_ids[i],
"doc": docs[i],
}
for i in range(seq_length)
],
)
def get_images_as_doc(self, images_with_vectors:list):
images_data = []
for i in range(len(images_with_vectors)):
data = {
"colbert_vecs": images_with_vectors[i]["colbert_vecs"],
"doc_id": i,
"filepath": images_with_vectors[i]["filepath"],
}
images_data.append(data)
return images_data
def insert_images_data(self, image_data):
data = self.get_images_as_doc(image_data)
for i in range(len(data)):
self.insert(data[i])
def drop_collection(self):
"""Drop the current collection from Milvus"""
try:
if self.client.has_collection(collection_name=self.collection_name):
self.client.drop_collection(collection_name=self.collection_name)
print(f"ποΈ Dropped Milvus collection: {self.collection_name}")
return True
else:
print(f"β οΈ Collection {self.collection_name} does not exist in Milvus")
return False
except Exception as e:
print(f"β Error dropping collection {self.collection_name}: {e}")
return False
|