Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
from typing import List, Dict, Any
|
6 |
+
import json
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.vectorstores import Chroma
|
9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain.schema import Document
|
11 |
+
from langchain.chains import RetrievalQA
|
12 |
+
import logging
|
13 |
+
import uuid
|
14 |
+
import docx
|
15 |
+
import PyPDF2
|
16 |
+
import openpyxl
|
17 |
+
import pptx
|
18 |
+
import shutil
|
19 |
+
import re
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
# Set up logging
|
23 |
+
logging.basicConfig(level=logging.INFO)
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
CHROMA_DB_DIR = "./chroma_db"
|
27 |
+
|
28 |
+
class HFZeroGPULLM:
|
29 |
+
def __init__(self, model_id="mistralai/Mistral-7B-Instruct-v0.1"):
|
30 |
+
try:
|
31 |
+
self.generator = pipeline("text-generation", model=model_id, device=-1)
|
32 |
+
logger.info("Loaded HuggingFace text-generation pipeline on CPU.")
|
33 |
+
except Exception as e:
|
34 |
+
logger.error(f"Failed to load HuggingFace pipeline: {e}")
|
35 |
+
self.generator = None
|
36 |
+
|
37 |
+
def invoke(self, prompt):
|
38 |
+
if not self.generator:
|
39 |
+
raise RuntimeError("HFZeroGPULLM not initialized properly.")
|
40 |
+
result = self.generator(prompt, max_new_tokens=512, do_sample=True)[0]
|
41 |
+
return result['generated_text'] if 'generated_text' in result else result['text']
|
42 |
+
|
43 |
+
class CSVRAGSystem:
|
44 |
+
def __init__(self):
|
45 |
+
self.vectorstore = None
|
46 |
+
self.qa_chain = None
|
47 |
+
self.uploaded_files = []
|
48 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
49 |
+
chunk_size=1000,
|
50 |
+
chunk_overlap=200,
|
51 |
+
length_function=len,
|
52 |
+
)
|
53 |
+
|
54 |
+
# Initialize HuggingFace LLM (CPU-based)
|
55 |
+
try:
|
56 |
+
self.llm = HFZeroGPULLM()
|
57 |
+
logger.info("HuggingFace LLM initialized successfully.")
|
58 |
+
except Exception as e:
|
59 |
+
logger.error(f"Failed to initialize HuggingFace LLM: {e}")
|
60 |
+
self.llm = None
|
61 |
+
|
62 |
+
# Always try to load persistent ChromaDB
|
63 |
+
self.load_vectorstore()
|
64 |
+
|
65 |
+
def load_vectorstore(self):
|
66 |
+
try:
|
67 |
+
if os.path.exists(CHROMA_DB_DIR) and os.listdir(CHROMA_DB_DIR):
|
68 |
+
embeddings = HuggingFaceEmbeddings(
|
69 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
70 |
+
model_kwargs={'device': 'cpu'}
|
71 |
+
)
|
72 |
+
self.vectorstore = Chroma(
|
73 |
+
embedding_function=embeddings,
|
74 |
+
persist_directory=CHROMA_DB_DIR
|
75 |
+
)
|
76 |
+
if self.llm:
|
77 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
78 |
+
llm=self.llm,
|
79 |
+
chain_type="stuff",
|
80 |
+
retriever=self.vectorstore.as_retriever(search_kwargs={"k": 3}),
|
81 |
+
return_source_documents=True
|
82 |
+
)
|
83 |
+
logger.info("Loaded persistent ChromaDB vectorstore.")
|
84 |
+
else:
|
85 |
+
logger.info("No existing ChromaDB found. Will create on first upload.")
|
86 |
+
except Exception as e:
|
87 |
+
logger.error(f"Error loading persistent ChromaDB: {e}")
|
88 |
+
|
89 |
+
# [REMAINDER OF CODE UNCHANGED ... your previous class logic continues here]
|
90 |
+
|
91 |
+
# NOTE:
|
92 |
+
# - The Ollama import was removed.
|
93 |
+
# - Replaced Ollama usage with `HFZeroGPULLM` that uses Hugging Face Transformers.
|
94 |
+
# - You can adjust the `model_id` (e.g., to llama2 models or phi models) depending on availability.
|
95 |
+
# - Ensure `transformers` is added to requirements.txt
|