Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,135 @@
|
|
1 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
|
5 |
# Load Personality_LM model and tokenizer
|
6 |
-
model
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def analyze_personality(text):
|
10 |
-
"""
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
with torch.no_grad():
|
14 |
-
|
|
|
15 |
|
|
|
16 |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
17 |
predicted_scores = predictions[0].tolist()
|
18 |
|
|
|
19 |
trait_names = ["agreeableness", "openness", "conscientiousness", "extraversion", "neuroticism"]
|
|
|
|
|
20 |
personality_traits = {trait: score for trait, score in zip(trait_names, predicted_scores)}
|
21 |
|
22 |
return personality_traits
|
23 |
|
24 |
-
def
|
25 |
-
"""
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return response
|
33 |
|
34 |
def respond(user_message, history, personality_text):
|
35 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
traits = analyze_personality(personality_text)
|
37 |
-
|
38 |
-
|
|
|
39 |
|
|
|
40 |
history.append((user_message, final_response))
|
|
|
41 |
return history, history
|
42 |
|
43 |
def personality_demo():
|
44 |
-
"""
|
|
|
|
|
|
|
|
|
45 |
with gr.Blocks() as demo:
|
|
|
46 |
gr.Markdown("### Personality-Based Chatbot")
|
47 |
|
|
|
48 |
personality_textbox = gr.Textbox(
|
49 |
label="Define Personality Text (Use direct input if no file)",
|
50 |
placeholder="Type personality description or paste a sample text here."
|
51 |
)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
56 |
|
|
|
57 |
msg.submit(respond, [msg, chatbot, personality_textbox], [chatbot, chatbot])
|
|
|
|
|
58 |
clear.click(lambda: ([], []), None, [chatbot, chatbot])
|
59 |
|
60 |
return demo
|
61 |
|
62 |
if __name__ == "__main__":
|
|
|
63 |
demo = personality_demo()
|
64 |
demo.launch()
|
|
|
1 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
|
6 |
# Load Personality_LM model and tokenizer
|
7 |
+
# The model is pre-trained to evaluate personality traits based on text input
|
8 |
+
personality_model = AutoModelForSequenceClassification.from_pretrained("KevSun/Personality_LM", ignore_mismatched_sizes=True)
|
9 |
+
personality_tokenizer = AutoTokenizer.from_pretrained("KevSun/Personality_LM")
|
10 |
+
|
11 |
+
# Initialize the LLM client (HuggingFaceH4/zephyr-7b-beta)
|
12 |
+
llm_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
13 |
|
14 |
def analyze_personality(text):
|
15 |
+
"""
|
16 |
+
Analyze personality traits from input text using the Personality_LM model.
|
17 |
+
Args:
|
18 |
+
text (str): The input text used for personality analysis.
|
19 |
+
Returns:
|
20 |
+
dict: A dictionary with personality traits and their corresponding scores.
|
21 |
+
"""
|
22 |
+
# Encode the input text for the model
|
23 |
+
encoded_input = personality_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
24 |
+
|
25 |
+
# Set the model to evaluation mode
|
26 |
+
personality_model.eval()
|
27 |
with torch.no_grad():
|
28 |
+
# Perform prediction
|
29 |
+
outputs = personality_model(**encoded_input)
|
30 |
|
31 |
+
# Apply softmax to get probabilities for each trait
|
32 |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
33 |
predicted_scores = predictions[0].tolist()
|
34 |
|
35 |
+
# Define trait names corresponding to the model's output indices
|
36 |
trait_names = ["agreeableness", "openness", "conscientiousness", "extraversion", "neuroticism"]
|
37 |
+
|
38 |
+
# Map traits to their respective scores
|
39 |
personality_traits = {trait: score for trait, score in zip(trait_names, predicted_scores)}
|
40 |
|
41 |
return personality_traits
|
42 |
|
43 |
+
def generate_response(user_message, traits):
|
44 |
+
"""
|
45 |
+
Generate a chatbot response using the LLM and personality traits.
|
46 |
+
Args:
|
47 |
+
user_message (str): The user's input message.
|
48 |
+
traits (dict): The personality traits with their scores.
|
49 |
+
Returns:
|
50 |
+
str: The chatbot response.
|
51 |
+
"""
|
52 |
+
# Create a system message to guide the LLM behavior
|
53 |
+
system_message = (
|
54 |
+
"You are a chatbot with the following personality traits: "
|
55 |
+
f"Agreeableness: {traits['agreeableness']:.2f}, "
|
56 |
+
f"Openness: {traits['openness']:.2f}, "
|
57 |
+
f"Conscientiousness: {traits['conscientiousness']:.2f}, "
|
58 |
+
f"Extraversion: {traits['extraversion']:.2f}, "
|
59 |
+
f"Neuroticism: {traits['neuroticism']:.2f}."
|
60 |
+
" Respond to the user's message in a way that reflects these traits."
|
61 |
+
)
|
62 |
+
|
63 |
+
# Generate a response using the LLM
|
64 |
+
messages = [
|
65 |
+
{"role": "system", "content": system_message},
|
66 |
+
{"role": "user", "content": user_message}
|
67 |
+
]
|
68 |
+
|
69 |
+
response = ""
|
70 |
+
for message in llm_client.chat_completion(
|
71 |
+
messages,
|
72 |
+
max_tokens=256,
|
73 |
+
stream=True,
|
74 |
+
temperature=0.7,
|
75 |
+
top_p=0.95
|
76 |
+
):
|
77 |
+
token = message.choices[0].delta.content
|
78 |
+
response += token
|
79 |
+
|
80 |
return response
|
81 |
|
82 |
def respond(user_message, history, personality_text):
|
83 |
+
"""
|
84 |
+
Generate a chatbot response based on user input and personality traits.
|
85 |
+
Args:
|
86 |
+
user_message (str): The user's input message.
|
87 |
+
history (list): A list of message-response tuples to maintain conversation history.
|
88 |
+
personality_text (str): The text defining the chatbot's personality.
|
89 |
+
Returns:
|
90 |
+
tuple: Updated conversation history.
|
91 |
+
"""
|
92 |
+
# Analyze personality traits from the provided text
|
93 |
traits = analyze_personality(personality_text)
|
94 |
+
|
95 |
+
# Generate a response using the LLM and personality traits
|
96 |
+
final_response = generate_response(user_message, traits)
|
97 |
|
98 |
+
# Append the new interaction to the conversation history
|
99 |
history.append((user_message, final_response))
|
100 |
+
|
101 |
return history, history
|
102 |
|
103 |
def personality_demo():
|
104 |
+
"""
|
105 |
+
Create the Gradio interface for the chatbot with personality-based adjustments.
|
106 |
+
Returns:
|
107 |
+
gr.Blocks: The Gradio interface object.
|
108 |
+
"""
|
109 |
with gr.Blocks() as demo:
|
110 |
+
# Header for the chatbot interface
|
111 |
gr.Markdown("### Personality-Based Chatbot")
|
112 |
|
113 |
+
# Textbox for defining personality traits via input text
|
114 |
personality_textbox = gr.Textbox(
|
115 |
label="Define Personality Text (Use direct input if no file)",
|
116 |
placeholder="Type personality description or paste a sample text here."
|
117 |
)
|
118 |
|
119 |
+
# Chatbot UI elements
|
120 |
+
chatbot = gr.Chatbot() # Chat display area
|
121 |
+
msg = gr.Textbox(label="User Input", placeholder="Say something to the chatbot...") # User input box
|
122 |
+
clear = gr.Button("Clear Chat") # Button to clear chat history
|
123 |
|
124 |
+
# Link user input submission to the chatbot response function
|
125 |
msg.submit(respond, [msg, chatbot, personality_textbox], [chatbot, chatbot])
|
126 |
+
|
127 |
+
# Link clear button to reset the chat history
|
128 |
clear.click(lambda: ([], []), None, [chatbot, chatbot])
|
129 |
|
130 |
return demo
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
+
# Launch the Gradio demo interface
|
134 |
demo = personality_demo()
|
135 |
demo.launch()
|