Spaces:
Sleeping
Sleeping
readme and shared global model and tokenizer
Browse files- README.md +88 -11
- app.py +7 -1
- qwen_classifier/evaluate.py +8 -7
- qwen_classifier/predict.py +7 -10
README.md
CHANGED
|
@@ -1,11 +1,88 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Qwen Multi-label Text Classifier
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
A multi-label text classifier based on Qwen-1.5B, fine-tuned for coding exercise classification. Supports:
|
| 5 |
+
- Local CPU/GPU inference
|
| 6 |
+
- Hugging Face API deployment
|
| 7 |
+
- Batch evaluation
|
| 8 |
+
- REST API via FastAPI
|
| 9 |
+
- Docker deployment
|
| 10 |
+
|
| 11 |
+
## Features
|
| 12 |
+
- **9 Label Classification**: Predicts multiple tags per text
|
| 13 |
+
- **CLI Interface**: Run predictions/evaluations from terminal
|
| 14 |
+
- **Dual Backend**: Choose between local or HF inference
|
| 15 |
+
- **GPU Optimized**: CUDA support via Docker
|
| 16 |
+
|
| 17 |
+
## Installation
|
| 18 |
+
```bash
|
| 19 |
+
git clone https://github.com/your-username/qwen-classifier
|
| 20 |
+
cd qwen-classifier
|
| 21 |
+
python3 -m venv .venv
|
| 22 |
+
source .venv/bin/activate
|
| 23 |
+
pip install -e .
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
## Usage
|
| 27 |
+
|
| 28 |
+
### CLI Prediction
|
| 29 |
+
```bash
|
| 30 |
+
# Local inference
|
| 31 |
+
qwen-clf predict "Your coding exercise text" --backend local
|
| 32 |
+
|
| 33 |
+
# HF Space inference
|
| 34 |
+
qwen-clf predict "Your text" --backend hf --hf-token YOUR_TOKEN
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### Batch Evaluation
|
| 38 |
+
```bash
|
| 39 |
+
qwen-clf evaluate dataset.zip --backend local
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
### API Server
|
| 43 |
+
```bash
|
| 44 |
+
uvicorn app:app --host 0.0.0.0 --port 7860
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
#### API Endpoints
|
| 48 |
+
| Endpoint | Method | Description |
|
| 49 |
+
|----------|--------|-------------|
|
| 50 |
+
| `/` | GET | Documentation |
|
| 51 |
+
| `/predict` | POST | Single text prediction |
|
| 52 |
+
| `/evaluate` | POST | Batch evaluation (ZIP) |
|
| 53 |
+
| `/health` | GET | Service status |
|
| 54 |
+
|
| 55 |
+
## Docker Deployment
|
| 56 |
+
```bash
|
| 57 |
+
# Build with GPU support
|
| 58 |
+
docker build -t qwen-classifier .
|
| 59 |
+
|
| 60 |
+
# Run container
|
| 61 |
+
docker run -p 7860:7860 --gpus all qwen-classifier
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## Project Structure
|
| 65 |
+
```
|
| 66 |
+
.
|
| 67 |
+
├── app.py # FastAPI entry point
|
| 68 |
+
├── Dockerfile # GPU-optimized container setup
|
| 69 |
+
├── qwen_classifier/ # Core package
|
| 70 |
+
│ ├── cli.py # Command line interface
|
| 71 |
+
│ ├── model.py # Qwen classifier implementation
|
| 72 |
+
│ ├── predict.py # Inference logic
|
| 73 |
+
│ └── evaluate.py # Batch evaluation
|
| 74 |
+
└── requirements.txt # Python dependencies
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
## Configuration
|
| 78 |
+
Edit `qwen_classifier/config.py` to set:
|
| 79 |
+
- `TAG_NAMES`: List of 9 classification tags
|
| 80 |
+
- `HF_REPO`: Default Hugging Face model repo
|
| 81 |
+
- `DEVICE`: Auto-detected CUDA/CPU
|
| 82 |
+
|
| 83 |
+
## Hugging Face Space
|
| 84 |
+
Live demo:
|
| 85 |
+
[](https://huggingface.co/spaces/KeivanR/qwen-classifier-demo)
|
| 86 |
+
|
| 87 |
+
## License
|
| 88 |
+
Apache 2.0 © Keivan Razban
|
app.py
CHANGED
|
@@ -7,12 +7,15 @@ from fastapi import FastAPI
|
|
| 7 |
from fastapi.responses import HTMLResponse
|
| 8 |
from qwen_classifier.predict import predict_single # Your existing function
|
| 9 |
from qwen_classifier.evaluate import evaluate_batch # Your existing function
|
|
|
|
| 10 |
import torch
|
|
|
|
| 11 |
from huggingface_hub import login
|
| 12 |
from qwen_classifier.model import QwenClassifier
|
| 13 |
from qwen_classifier.config import HF_REPO
|
| 14 |
from pydantic import BaseModel
|
| 15 |
|
|
|
|
| 16 |
app = FastAPI(title="Qwen Classifier")
|
| 17 |
hf_repo = os.getenv("HF_REPO")
|
| 18 |
if not hf_repo:
|
|
@@ -41,6 +44,7 @@ def home():
|
|
| 41 |
|
| 42 |
@app.on_event("startup")
|
| 43 |
async def load_model():
|
|
|
|
| 44 |
# Warm up GPU
|
| 45 |
torch.zeros(1).cuda()
|
| 46 |
# Read HF_TOKEN from Hugging Face Space secrets
|
|
@@ -52,9 +56,11 @@ async def load_model():
|
|
| 52 |
login(token=hf_token)
|
| 53 |
|
| 54 |
# Load model (will cache in /home/user/.cache/huggingface)
|
| 55 |
-
|
|
|
|
| 56 |
hf_repo,
|
| 57 |
)
|
|
|
|
| 58 |
print("Model loaded successfully!")
|
| 59 |
|
| 60 |
|
|
|
|
| 7 |
from fastapi.responses import HTMLResponse
|
| 8 |
from qwen_classifier.predict import predict_single # Your existing function
|
| 9 |
from qwen_classifier.evaluate import evaluate_batch # Your existing function
|
| 10 |
+
from qwen_classifier.globals import model, tokenizer
|
| 11 |
import torch
|
| 12 |
+
from transformers import AutoTokenizer
|
| 13 |
from huggingface_hub import login
|
| 14 |
from qwen_classifier.model import QwenClassifier
|
| 15 |
from qwen_classifier.config import HF_REPO
|
| 16 |
from pydantic import BaseModel
|
| 17 |
|
| 18 |
+
|
| 19 |
app = FastAPI(title="Qwen Classifier")
|
| 20 |
hf_repo = os.getenv("HF_REPO")
|
| 21 |
if not hf_repo:
|
|
|
|
| 44 |
|
| 45 |
@app.on_event("startup")
|
| 46 |
async def load_model():
|
| 47 |
+
global model, tokenizer
|
| 48 |
# Warm up GPU
|
| 49 |
torch.zeros(1).cuda()
|
| 50 |
# Read HF_TOKEN from Hugging Face Space secrets
|
|
|
|
| 56 |
login(token=hf_token)
|
| 57 |
|
| 58 |
# Load model (will cache in /home/user/.cache/huggingface)
|
| 59 |
+
|
| 60 |
+
model = QwenClassifier.from_pretrained(
|
| 61 |
hf_repo,
|
| 62 |
)
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_repo)
|
| 64 |
print("Model loaded successfully!")
|
| 65 |
|
| 66 |
|
qwen_classifier/evaluate.py
CHANGED
|
@@ -10,6 +10,7 @@ from datasets import Dataset
|
|
| 10 |
from torch.utils.data import DataLoader
|
| 11 |
import requests
|
| 12 |
from .config import TAG_NAMES, DEVICE, SPACE_URL
|
|
|
|
| 13 |
|
| 14 |
def load_data(test_data_path):
|
| 15 |
# zip file handler
|
|
@@ -72,15 +73,15 @@ def evaluate_batch(file_path, hf_repo, backend="local", hf_token=None):
|
|
| 72 |
raise ValueError(f"Unknown backend: {backend}")
|
| 73 |
|
| 74 |
def _evaluate_local(test_data_path, hf_repo):
|
| 75 |
-
global
|
| 76 |
|
| 77 |
# Lazy-loading to avoid slow startup
|
| 78 |
-
if
|
| 79 |
from .model import QwenClassifier
|
| 80 |
from transformers import AutoTokenizer
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
df = load_data(test_data_path)
|
| 85 |
df = preprocessing(df)
|
| 86 |
|
|
@@ -88,7 +89,7 @@ def _evaluate_local(test_data_path, hf_repo):
|
|
| 88 |
|
| 89 |
# Then apply tokenization
|
| 90 |
def tokenize_function(examples):
|
| 91 |
-
return
|
| 92 |
|
| 93 |
dataset = hf_dataset.map(tokenize_function, batched=True)
|
| 94 |
|
|
@@ -97,7 +98,7 @@ def _evaluate_local(test_data_path, hf_repo):
|
|
| 97 |
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
|
| 98 |
|
| 99 |
|
| 100 |
-
|
| 101 |
all_preds = []
|
| 102 |
all_labels = []
|
| 103 |
|
|
@@ -106,7 +107,7 @@ def _evaluate_local(test_data_path, hf_repo):
|
|
| 106 |
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
| 107 |
labels = batch["labels"].type(torch.float32)
|
| 108 |
|
| 109 |
-
logits =
|
| 110 |
|
| 111 |
preds = torch.sigmoid(logits).cpu().numpy() > 0.5
|
| 112 |
labels = labels.cpu().numpy()
|
|
|
|
| 10 |
from torch.utils.data import DataLoader
|
| 11 |
import requests
|
| 12 |
from .config import TAG_NAMES, DEVICE, SPACE_URL
|
| 13 |
+
from .globals import model, tokenizer
|
| 14 |
|
| 15 |
def load_data(test_data_path):
|
| 16 |
# zip file handler
|
|
|
|
| 73 |
raise ValueError(f"Unknown backend: {backend}")
|
| 74 |
|
| 75 |
def _evaluate_local(test_data_path, hf_repo):
|
| 76 |
+
global model, tokenizer
|
| 77 |
|
| 78 |
# Lazy-loading to avoid slow startup
|
| 79 |
+
if model is None:
|
| 80 |
from .model import QwenClassifier
|
| 81 |
from transformers import AutoTokenizer
|
| 82 |
|
| 83 |
+
model = QwenClassifier.from_pretrained(hf_repo).eval()
|
| 84 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_repo)
|
| 85 |
df = load_data(test_data_path)
|
| 86 |
df = preprocessing(df)
|
| 87 |
|
|
|
|
| 89 |
|
| 90 |
# Then apply tokenization
|
| 91 |
def tokenize_function(examples):
|
| 92 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
| 93 |
|
| 94 |
dataset = hf_dataset.map(tokenize_function, batched=True)
|
| 95 |
|
|
|
|
| 98 |
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
|
| 99 |
|
| 100 |
|
| 101 |
+
model.eval()
|
| 102 |
all_preds = []
|
| 103 |
all_labels = []
|
| 104 |
|
|
|
|
| 107 |
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
| 108 |
labels = batch["labels"].type(torch.float32)
|
| 109 |
|
| 110 |
+
logits = model(batch["input_ids"], batch["attention_mask"])
|
| 111 |
|
| 112 |
preds = torch.sigmoid(logits).cpu().numpy() > 0.5
|
| 113 |
labels = labels.cpu().numpy()
|
qwen_classifier/predict.py
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
import requests
|
| 3 |
from .config import TAG_NAMES, SPACE_URL
|
| 4 |
-
|
| 5 |
-
# Local model setup (only load if needed)
|
| 6 |
-
local_model = None
|
| 7 |
-
local_tokenizer = None
|
| 8 |
|
| 9 |
def predict_single(text, hf_repo, backend="local", hf_token=None):
|
| 10 |
if backend == "local":
|
|
@@ -15,19 +12,19 @@ def predict_single(text, hf_repo, backend="local", hf_token=None):
|
|
| 15 |
raise ValueError(f"Unknown backend: {backend}")
|
| 16 |
|
| 17 |
def _predict_local(text, hf_repo):
|
| 18 |
-
global
|
| 19 |
|
| 20 |
# Lazy-loading to avoid slow startup
|
| 21 |
-
if
|
| 22 |
from .model import QwenClassifier
|
| 23 |
from transformers import AutoTokenizer
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
inputs =
|
| 29 |
with torch.no_grad():
|
| 30 |
-
logits =
|
| 31 |
return _process_output(logits)
|
| 32 |
|
| 33 |
def _predict_hf_api(text, hf_token=None):
|
|
|
|
| 1 |
import torch
|
| 2 |
import requests
|
| 3 |
from .config import TAG_NAMES, SPACE_URL
|
| 4 |
+
from .globals import model, tokenizer
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def predict_single(text, hf_repo, backend="local", hf_token=None):
|
| 7 |
if backend == "local":
|
|
|
|
| 12 |
raise ValueError(f"Unknown backend: {backend}")
|
| 13 |
|
| 14 |
def _predict_local(text, hf_repo):
|
| 15 |
+
global model, tokenizer
|
| 16 |
|
| 17 |
# Lazy-loading to avoid slow startup
|
| 18 |
+
if model is None:
|
| 19 |
from .model import QwenClassifier
|
| 20 |
from transformers import AutoTokenizer
|
| 21 |
|
| 22 |
+
model = QwenClassifier.from_pretrained(hf_repo).eval()
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_repo)
|
| 24 |
|
| 25 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 26 |
with torch.no_grad():
|
| 27 |
+
logits = model(**inputs)
|
| 28 |
return _process_output(logits)
|
| 29 |
|
| 30 |
def _predict_hf_api(text, hf_token=None):
|