Spaces:
Sleeping
Sleeping
token in app
Browse files- Dockerfile +0 -9
- app.py +16 -0
Dockerfile
CHANGED
|
@@ -29,15 +29,6 @@ RUN pip install --no-cache-dir \
|
|
| 29 |
torchvision==0.16.2+cu121 \
|
| 30 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 31 |
|
| 32 |
-
# Set up Hugging Face authentication (use a build ARG for the token)
|
| 33 |
-
# ARG HF_TOKEN
|
| 34 |
-
# RUN python3 -c "from huggingface_hub import login; login(token='$HF_TOKEN')"
|
| 35 |
-
|
| 36 |
-
# Test model loading (use absolute import path)
|
| 37 |
-
RUN python3 -c "from qwen_classifier.model import QwenClassifier; \
|
| 38 |
-
QwenClassifier.from_pretrained('KeivanR/Qwen2.5-1.5B-Instruct-MLB-clf_lora-1743189446'); \
|
| 39 |
-
print('Model loaded successfully')"
|
| 40 |
-
|
| 41 |
# Run FastAPI app
|
| 42 |
EXPOSE 7860
|
| 43 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 29 |
torchvision==0.16.2+cu121 \
|
| 30 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Run FastAPI app
|
| 33 |
EXPOSE 7860
|
| 34 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from qwen_classifier.predict import predict_single # Your existing function
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
app = FastAPI(title="Qwen Classifier")
|
| 6 |
|
|
@@ -8,6 +11,19 @@ app = FastAPI(title="Qwen Classifier")
|
|
| 8 |
async def load_model():
|
| 9 |
# Warm up GPU
|
| 10 |
torch.zeros(1).cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
@app.post("/predict")
|
| 13 |
async def predict(text: str):
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from qwen_classifier.predict import predict_single # Your existing function
|
| 3 |
import torch
|
| 4 |
+
from huggingface_hub import login
|
| 5 |
+
from qwen_classifier.model import QwenClassifier
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
app = FastAPI(title="Qwen Classifier")
|
| 9 |
|
|
|
|
| 11 |
async def load_model():
|
| 12 |
# Warm up GPU
|
| 13 |
torch.zeros(1).cuda()
|
| 14 |
+
# Read HF_TOKEN from Hugging Face Space secrets
|
| 15 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 16 |
+
if not hf_token:
|
| 17 |
+
raise ValueError("HF_TOKEN not found in environment variables")
|
| 18 |
+
|
| 19 |
+
# Authenticate
|
| 20 |
+
login(token=hf_token)
|
| 21 |
+
|
| 22 |
+
# Load model (will cache in /home/user/.cache/huggingface)
|
| 23 |
+
app.state.model = QwenClassifier.from_pretrained(
|
| 24 |
+
'KeivanR/Qwen2.5-1.5B-Instruct-MLB-clf_lora-1743189446'
|
| 25 |
+
)
|
| 26 |
+
print("Model loaded successfully!")
|
| 27 |
|
| 28 |
@app.post("/predict")
|
| 29 |
async def predict(text: str):
|