|
import gradio as gr |
|
import os.path |
|
import numpy as np |
|
from collections import OrderedDict |
|
import torch |
|
import cv2 |
|
from PIL import Image, ImageOps |
|
import utils_image as util |
|
from network_fbcnn import FBCNN as net |
|
import requests |
|
import datetime |
|
from gradio_imageslider import ImageSlider |
|
|
|
current_output = None |
|
for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']: |
|
if os.path.exists(model_path): |
|
print(f'{model_path} exists.') |
|
else: |
|
print("downloading model") |
|
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) |
|
r = requests.get(url, allow_redirects=True) |
|
open(model_path, 'wb').write(r.content) |
|
|
|
def inference(input_img, is_gray, res_percentage, input_quality, zoom, x_shift, y_shift): |
|
|
|
print("datetime:", datetime.datetime.utcnow()) |
|
input_img_width, input_img_height = Image.fromarray(input_img).size |
|
print("img size:", (input_img_width, input_img_height)) |
|
|
|
resized_input = Image.fromarray(input_img).resize( |
|
( |
|
int(input_img_width * (res_percentage/100)), |
|
int(input_img_height * (res_percentage/100)) |
|
), resample = Image.BICUBIC) |
|
input_img = np.array(resized_input) |
|
print("input image resized to:", resized_input.size) |
|
|
|
if is_gray: |
|
n_channels = 1 |
|
model_name = 'fbcnn_gray.pth' |
|
else: |
|
n_channels = 3 |
|
model_name = 'fbcnn_color.pth' |
|
nc = [64,128,256,512] |
|
nb = 4 |
|
|
|
input_quality = 100 - input_quality |
|
|
|
model_path = model_name |
|
|
|
if os.path.exists(model_path): |
|
print(f'{model_path} already exists.') |
|
else: |
|
print("downloading model") |
|
os.makedirs(os.path.dirname(model_path), exist_ok=True) |
|
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path)) |
|
r = requests.get(url, allow_redirects=True) |
|
open(model_path, 'wb').write(r.content) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
print("device:", device) |
|
|
|
print(f'loading model from {model_path}') |
|
|
|
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R') |
|
print("#model.load_state_dict(torch.load(model_path), strict=True)") |
|
model.load_state_dict(torch.load(model_path), strict=True) |
|
print("#model.eval()") |
|
model.eval() |
|
print("#for k, v in model.named_parameters()") |
|
for k, v in model.named_parameters(): |
|
v.requires_grad = False |
|
print("#model.to(device)") |
|
model = model.to(device) |
|
print("Model loaded.") |
|
|
|
test_results = OrderedDict() |
|
test_results['psnr'] = [] |
|
test_results['ssim'] = [] |
|
test_results['psnrb'] = [] |
|
|
|
print("#if n_channels") |
|
if n_channels == 1: |
|
open_cv_image = Image.fromarray(input_img) |
|
open_cv_image = ImageOps.grayscale(open_cv_image) |
|
open_cv_image = np.array(open_cv_image) |
|
img = np.expand_dims(open_cv_image, axis=2) |
|
elif n_channels == 3: |
|
open_cv_image = np.array(input_img) |
|
if open_cv_image.ndim == 2: |
|
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) |
|
else: |
|
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) |
|
|
|
print("#util.uint2tensor4(open_cv_image)") |
|
img_L = util.uint2tensor4(open_cv_image) |
|
|
|
print("#img_L.to(device)") |
|
img_L = img_L.to(device) |
|
|
|
print("#model(img_L)") |
|
img_E, QF = model(img_L) |
|
print("#util.tensor2single(img_E)") |
|
img_E = util.tensor2single(img_E) |
|
print("#util.single2uint(img_E)") |
|
img_E = util.single2uint(img_E) |
|
|
|
print("#torch.tensor([[1-input_quality/100]]).cuda() || torch.tensor([[1-input_quality/100]])") |
|
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]]) |
|
print("#util.single2uint(img_E)") |
|
img_E, QF = model(img_L, qf_input) |
|
|
|
print("#util.tensor2single(img_E)") |
|
img_E = util.tensor2single(img_E) |
|
print("#util.single2uint(img_E)") |
|
img_E = util.single2uint(img_E) |
|
|
|
if img_E.ndim == 3: |
|
img_E = img_E[:, :, [2, 1, 0]] |
|
|
|
global current_output |
|
current_output = img_E.copy() |
|
print("--inference finished") |
|
|
|
(in_img, out_img) = zoom_image(zoom, x_shift, y_shift, input_img, img_E) |
|
print("--generating preview finished") |
|
|
|
return img_E, (in_img, out_img) |
|
|
|
def zoom_image(zoom, x_shift, y_shift, input_img, output_img = None): |
|
global current_output |
|
if output_img is None: |
|
if current_output is None: |
|
return None |
|
output_img = current_output |
|
|
|
img = Image.fromarray(input_img) |
|
out_img = Image.fromarray(output_img) |
|
|
|
img_w, img_h = img.size |
|
zoom_factor = (100 - zoom) / 100 |
|
x_shift /= 100 |
|
y_shift /= 100 |
|
|
|
zoom_w, zoom_h = int(img_w * zoom_factor), int(img_h * zoom_factor) |
|
x_offset = int((img_w - zoom_w) * x_shift) |
|
y_offset = int((img_h - zoom_h) * y_shift) |
|
|
|
crop_box = (x_offset, y_offset, x_offset + zoom_w, y_offset + zoom_h) |
|
img = img.resize((img_w, img_h), Image.BILINEAR).crop(crop_box) |
|
out_img = out_img.resize((img_w, img_h), Image.BILINEAR).crop(crop_box) |
|
|
|
return (img, out_img) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# JPEG Artifacts Removal [FBCNN]") |
|
|
|
with gr.Row(): |
|
input_img = gr.Image(label="Input Image") |
|
output_img = gr.Image(label="Result") |
|
|
|
is_gray = gr.Checkbox(label="Grayscale (Check this if your image is grayscale)") |
|
max_res = gr.Slider(1, 100, step=0.5, label="Output image resolution Percentage (Higher% = longer processing time)") |
|
input_quality = gr.Slider(1, 100, step=1, label="Intensity (Higher = stronger JPEG artifact removal)") |
|
zoom = gr.Slider(0, 100, step=1, value=50, label="Zoom Percentage (0 = original size)") |
|
x_shift = gr.Slider(0, 100, step=1, label="Horizontal shift Percentage (Before/After)") |
|
y_shift = gr.Slider(0, 100, step=1, label="Vertical shift Percentage (Before/After)") |
|
|
|
run = gr.Button("Run") |
|
|
|
with gr.Row(): |
|
before_after = ImageSlider(label="Before/After", type="pil", value=None) |
|
|
|
run.click( |
|
inference, |
|
inputs=[input_img, is_gray, max_res, input_quality, zoom, x_shift, y_shift], |
|
outputs=[output_img, before_after] |
|
) |
|
|
|
gr.Examples([ |
|
["doraemon.jpg", False, 100, 60, 58, 50, 50], |
|
["tomandjerry.jpg", False, 100, 60, 60, 57, 44], |
|
["somepanda.jpg", True, 100, 100, 70, 8, 24], |
|
["cemetry.jpg", False, 100, 70, 80, 76, 62], |
|
["michelangelo_david.jpg", True, 100, 30, 88, 53, 27], |
|
["elon_musk.jpg", False, 100, 45, 75, 33, 30], |
|
["text.jpg", True, 100, 70, 50, 11, 29] |
|
], inputs=[input_img, is_gray, max_res, input_quality, zoom, x_shift, y_shift]) |
|
|
|
zoom.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img], outputs=[before_after]) |
|
x_shift.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img], outputs=[before_after]) |
|
y_shift.release(zoom_image, inputs=[zoom, x_shift, y_shift, input_img], outputs=[before_after]) |
|
|
|
gr.Markdown(""" |
|
JPEG Artifacts are noticeable distortions of images caused by JPEG lossy compression. |
|
Note that this is not an AI Upscaler, but just a JPEG Compression Artifact Remover. |
|
|
|
[Original Demo](https://huggingface.co/spaces/danielsapit/JPEG_Artifacts_Removal) |
|
[FBCNN GitHub Repo](https://github.com/jiaxi-jiang/FBCNN) |
|
[Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)](https://arxiv.org/abs/2109.14573) |
|
[Jiaxi Jiang](https://jiaxi-jiang.github.io/), |
|
[Kai Zhang](https://cszn.github.io/), |
|
[Radu Timofte](http://people.ee.ethz.ch/~timofter/) |
|
""") |
|
|
|
demo.launch() |