Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -55,7 +55,7 @@ def pil_to_tensor(images):
|
|
55 |
args = Args()
|
56 |
|
57 |
# Define the data type for model weights
|
58 |
-
weight_dtype = torch.
|
59 |
|
60 |
if args.seed is not None:
|
61 |
set_seed(args.seed)
|
@@ -66,32 +66,32 @@ noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_pa
|
|
66 |
vae = AutoencoderKL.from_pretrained(
|
67 |
args.pretrained_model_name_or_path,
|
68 |
subfolder="vae",
|
69 |
-
torch_dtype=torch.
|
70 |
)
|
71 |
unet = UNet2DConditionModel.from_pretrained(
|
72 |
args.pretrained_model_name_or_path,
|
73 |
subfolder="unet",
|
74 |
-
torch_dtype=torch.
|
75 |
)
|
76 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
77 |
args.pretrained_model_name_or_path,
|
78 |
subfolder="image_encoder",
|
79 |
-
torch_dtype=torch.
|
80 |
)
|
81 |
unet_encoder = UNet2DConditionModel_ref.from_pretrained(
|
82 |
args.pretrained_model_name_or_path,
|
83 |
subfolder="unet_encoder",
|
84 |
-
torch_dtype=torch.
|
85 |
)
|
86 |
text_encoder_one = CLIPTextModel.from_pretrained(
|
87 |
args.pretrained_model_name_or_path,
|
88 |
subfolder="text_encoder",
|
89 |
-
torch_dtype=torch.
|
90 |
)
|
91 |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
92 |
args.pretrained_model_name_or_path,
|
93 |
subfolder="text_encoder_2",
|
94 |
-
torch_dtype=torch.
|
95 |
)
|
96 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
97 |
args.pretrained_model_name_or_path,
|
@@ -128,7 +128,7 @@ pipe = TryonPipeline.from_pretrained(
|
|
128 |
scheduler = noise_scheduler,
|
129 |
image_encoder=image_encoder,
|
130 |
unet_encoder = unet_encoder,
|
131 |
-
torch_dtype=torch.
|
132 |
).to(device)
|
133 |
# pipe.enable_sequential_cpu_offload()
|
134 |
# pipe.enable_model_cpu_offload()
|
|
|
55 |
args = Args()
|
56 |
|
57 |
# Define the data type for model weights
|
58 |
+
weight_dtype = torch.float32
|
59 |
|
60 |
if args.seed is not None:
|
61 |
set_seed(args.seed)
|
|
|
66 |
vae = AutoencoderKL.from_pretrained(
|
67 |
args.pretrained_model_name_or_path,
|
68 |
subfolder="vae",
|
69 |
+
torch_dtype=torch.float32,
|
70 |
)
|
71 |
unet = UNet2DConditionModel.from_pretrained(
|
72 |
args.pretrained_model_name_or_path,
|
73 |
subfolder="unet",
|
74 |
+
torch_dtype=torch.float32,
|
75 |
)
|
76 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
77 |
args.pretrained_model_name_or_path,
|
78 |
subfolder="image_encoder",
|
79 |
+
torch_dtype=torch.float32,
|
80 |
)
|
81 |
unet_encoder = UNet2DConditionModel_ref.from_pretrained(
|
82 |
args.pretrained_model_name_or_path,
|
83 |
subfolder="unet_encoder",
|
84 |
+
torch_dtype=torch.float32,
|
85 |
)
|
86 |
text_encoder_one = CLIPTextModel.from_pretrained(
|
87 |
args.pretrained_model_name_or_path,
|
88 |
subfolder="text_encoder",
|
89 |
+
torch_dtype=torch.float32,
|
90 |
)
|
91 |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
92 |
args.pretrained_model_name_or_path,
|
93 |
subfolder="text_encoder_2",
|
94 |
+
torch_dtype=torch.float32,
|
95 |
)
|
96 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
97 |
args.pretrained_model_name_or_path,
|
|
|
128 |
scheduler = noise_scheduler,
|
129 |
image_encoder=image_encoder,
|
130 |
unet_encoder = unet_encoder,
|
131 |
+
torch_dtype=torch.float32,
|
132 |
).to(device)
|
133 |
# pipe.enable_sequential_cpu_offload()
|
134 |
# pipe.enable_model_cpu_offload()
|