Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -146,17 +146,17 @@ def start_tryon(person_img, pose_img, mask_img, cloth_img, garment_des, denoise_
|
|
146 |
prompt = f"model is wearing {garment_des}"
|
147 |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
148 |
with torch.inference_mode():
|
149 |
-
|
150 |
prompt_embeds,
|
151 |
negative_prompt_embeds,
|
152 |
pooled_prompt_embeds,
|
153 |
negative_pooled_prompt_embeds,
|
154 |
-
|
155 |
prompt,
|
156 |
num_images_per_prompt=1,
|
157 |
do_classifier_free_guidance=True,
|
158 |
negative_prompt=negative_prompt,
|
159 |
-
|
160 |
prompt = "a photo of " + garment_des
|
161 |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
162 |
if not isinstance(prompt, List):
|
@@ -165,15 +165,15 @@ def start_tryon(person_img, pose_img, mask_img, cloth_img, garment_des, denoise_
|
|
165 |
negative_prompt = [negative_prompt] * 1
|
166 |
with torch.inference_mode():
|
167 |
(
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
)= pipe.encode_prompt(
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
)
|
178 |
|
179 |
# Convert images to tensors for processing
|
|
|
146 |
prompt = f"model is wearing {garment_des}"
|
147 |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
148 |
with torch.inference_mode():
|
149 |
+
(
|
150 |
prompt_embeds,
|
151 |
negative_prompt_embeds,
|
152 |
pooled_prompt_embeds,
|
153 |
negative_pooled_prompt_embeds,
|
154 |
+
)= pipe.encode_prompt(
|
155 |
prompt,
|
156 |
num_images_per_prompt=1,
|
157 |
do_classifier_free_guidance=True,
|
158 |
negative_prompt=negative_prompt,
|
159 |
+
)
|
160 |
prompt = "a photo of " + garment_des
|
161 |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
162 |
if not isinstance(prompt, List):
|
|
|
165 |
negative_prompt = [negative_prompt] * 1
|
166 |
with torch.inference_mode():
|
167 |
(
|
168 |
+
prompt_embeds_cloth,
|
169 |
+
_,
|
170 |
+
_,
|
171 |
+
_,
|
172 |
)= pipe.encode_prompt(
|
173 |
+
prompt,
|
174 |
+
num_images_per_prompt=1,
|
175 |
+
do_classifier_free_guidance=False,
|
176 |
+
negative_prompt=negative_prompt,
|
177 |
)
|
178 |
|
179 |
# Convert images to tensors for processing
|