Spaces:
Runtime error
Runtime error
Duplicate from keras-io/super-resolution
Browse filesCo-authored-by: Julien Chaumond <[email protected]>
- .gitattributes +27 -0
- README.md +47 -0
- app.py +50 -0
- camel.jpg +0 -0
- pokemon.jpg +0 -0
- requirements.txt +1 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Super Resolution
|
3 |
+
emoji: 🖼
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
license: mit
|
10 |
+
duplicated_from: keras-io/super-resolution
|
11 |
+
---
|
12 |
+
|
13 |
+
# Configuration
|
14 |
+
|
15 |
+
`Super-resolution using Efficient Sub pixel net`: _string_
|
16 |
+
Display title for the Space
|
17 |
+
|
18 |
+
`emoji`: _string_
|
19 |
+
Space emoji (emoji-only character allowed)
|
20 |
+
|
21 |
+
`colorFrom`: _string_
|
22 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
23 |
+
|
24 |
+
`colorTo`: _string_
|
25 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
26 |
+
|
27 |
+
`sdk`: _string_
|
28 |
+
Can be either `gradio`, `streamlit`, or `static`
|
29 |
+
|
30 |
+
`sdk_version` : _string_
|
31 |
+
Only applicable for `streamlit` SDK.
|
32 |
+
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
33 |
+
|
34 |
+
`app_file`: _string_
|
35 |
+
Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
|
36 |
+
Path is relative to the root of the repository.
|
37 |
+
|
38 |
+
`models`: _List[string]_
|
39 |
+
HF model IDs (like "gpt2" or "deepset/roberta-base-squad2") used in the Space.
|
40 |
+
Will be parsed automatically from your code if not specified here.
|
41 |
+
|
42 |
+
`datasets`: _List[string]_
|
43 |
+
HF dataset IDs (like "common_voice" or "oscar-corpus/OSCAR-2109") used in the Space.
|
44 |
+
Will be parsed automatically from your code if not specified here.
|
45 |
+
|
46 |
+
`pinned`: _boolean_
|
47 |
+
Whether the Space stays on top of your list.
|
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
8 |
+
from huggingface_hub import from_pretrained_keras
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
model = from_pretrained_keras("keras-io/super-resolution")
|
12 |
+
|
13 |
+
def infer(image):
|
14 |
+
img = Image.fromarray(image)
|
15 |
+
img = img.resize((100,100))
|
16 |
+
ycbcr = img.convert("YCbCr")
|
17 |
+
y, cb, cr = ycbcr.split()
|
18 |
+
y = img_to_array(y)
|
19 |
+
y = y.astype("float32") / 255.0
|
20 |
+
|
21 |
+
input = np.expand_dims(y, axis=0)
|
22 |
+
out = model.predict(input)
|
23 |
+
|
24 |
+
out_img_y = out[0]
|
25 |
+
out_img_y *= 255.0
|
26 |
+
|
27 |
+
# Restore the image in RGB color space.
|
28 |
+
out_img_y = out_img_y.clip(0, 255)
|
29 |
+
out_img_y = out_img_y.reshape((np.shape(out_img_y)[0], np.shape(out_img_y)[1]))
|
30 |
+
out_img_y = Image.fromarray(np.uint8(out_img_y), mode="L")
|
31 |
+
out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
|
32 |
+
out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
|
33 |
+
out_img = Image.merge("YCbCr", (out_img_y, out_img_cb, out_img_cr)).convert(
|
34 |
+
"RGB"
|
35 |
+
)
|
36 |
+
return (img,out_img)
|
37 |
+
|
38 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1609.05158' target='_blank'>Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network</a></p><center> <a href='https://keras.io/examples/vision/super_resolution_sub_pixel/' target='_blank'>Image Super-Resolution using an Efficient Sub-Pixel CNN</a></p> <center>Contributors: <a href='https://twitter.com/Cr0wley_zz'>Devjyoti Chakraborty</a>|<a href='https://twitter.com/ritwik_raha'>Ritwik Raha</a>|<a href='https://twitter.com/ariG23498'>Aritra Roy Gosthipaty</a></center>"
|
39 |
+
|
40 |
+
iface = gr.Interface(
|
41 |
+
fn=infer,
|
42 |
+
title = " Image Super-resolution",
|
43 |
+
description = "This space is a demo of the keras tutorial 'Image Super-Resolution using an Efficient Sub-Pixel CNN' based on the paper 'Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network' 👀",
|
44 |
+
article = article,
|
45 |
+
inputs=gr.inputs.Image(label="Input Image"),
|
46 |
+
outputs=[gr.outputs.Image(label="Resized 100x100 image"),
|
47 |
+
gr.outputs.Image(label="Super-resolution 300x300 image")
|
48 |
+
],
|
49 |
+
examples=[["camel.jpg"], ["pokemon.jpg"]],
|
50 |
+
).launch()
|
camel.jpg
ADDED
![]() |
pokemon.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tensorflow>2.6
|