Scoring_IELTS / app.py
KevSun's picture
Update app.py
b82d631 verified
raw
history blame
2.15 kB
import streamlit as st
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
import numpy as np
# Load the model and tokenizer from Hugging Face
model_name = "KevSun/IELTS_essay_scoring"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Streamlit app
st.title("Automated Scoring IELTS App")
st.write("Enter your IELTS essay below to predict scores from multiple dimensions:")
# Input text from user
user_input = st.text_area("Your text here:")
if st.button("Predict"):
if user_input:
# Tokenize input text
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
# Get predictions from the model
with torch.no_grad():
outputs = model(**inputs)
# Extract the predictions
predictions = outputs.logits.squeeze()
# Convert to numpy array if necessary
predicted_scores = predictions.numpy()
# Apply a significant uniform reduction (e.g., reduce by 80%)
reduction_factor = 0.6 # Reduce scores by 80%
adjusted_scores = predicted_scores * reduction_factor
# Ensure scores do not go below zero
adjusted_scores = np.maximum(adjusted_scores, 0)
# Normalize the scores to ensure they fall within the 0-9 range
normalized_scores = (adjusted_scores / adjusted_scores.max()) * 9 # Scale to 9
# Apply additional reductions to all scores
additional_reduction = 1.5 # Further reduce all scores
normalized_scores = np.maximum(normalized_scores - additional_reduction, 0)
# Round the scores
rounded_scores = np.round(normalized_scores * 2) / 2
# Display the predictions
labels = ["Task Achievement", "Coherence and Cohesion", "Vocabulary", "Grammar", "Overall"]
for label, score in zip(labels, rounded_scores):
st.write(f"{label}: {score:.1f}")
else:
st.write("Please enter some text to get scores.")