Spaces:
Runtime error
Runtime error
| import cv2 | |
| import numpy as np | |
| import os | |
| from ultralytics import YOLO | |
| import time | |
| from typing import Tuple, Set | |
| def detection(path: str) -> Tuple[Set[str], str]: | |
| """ | |
| Detects and tracks objects in a video using YOLOv8 model, saving an annotated output video. | |
| Args: | |
| path (str): Path to the input video file. Supports common video formats (mp4, avi, etc.) | |
| Returns: | |
| Tuple[Set[str], str]: | |
| - Set of unique detected object labels (e.g., {'Gun', 'Knife'}) | |
| - Path to the output annotated video with detection boxes and tracking IDs | |
| Raises: | |
| FileNotFoundError: If input video doesn't exist | |
| ValueError: If video cannot be opened/processed | |
| """ | |
| # Validate input file exists | |
| if not os.path.exists(path): | |
| raise FileNotFoundError(f"Video file not found: {path}") | |
| # Initialize YOLOv8 model with pretrained weights | |
| # Model is trained to detect: ['Fire', 'Gun', 'License_Plate', 'Smoke', 'knife'] | |
| model = YOLO(os.path.join(os.path.dirname(__file__), "yolo", "best.pt")) | |
| class_names = model.names # Get class label mappings | |
| # Set up output paths: | |
| # 1. Temporary output during processing | |
| # 2. Final output with detected objects in filename | |
| input_video_name = os.path.basename(path) | |
| base_name = os.path.splitext(input_video_name)[0] | |
| temp_output_name = f"{base_name}_output_temp.mp4" | |
| output_dir = "results" | |
| os.makedirs(output_dir, exist_ok=True) # Create output dir if needed | |
| if not os.path.exists(output_dir): | |
| raise ValueError(f"Failed to create output directory: {output_dir}") | |
| temp_output_path = os.path.join(output_dir, temp_output_name) | |
| # Video processing setup: | |
| # - Open input video stream | |
| # - Initialize output writer with MP4 codec | |
| cap = cv2.VideoCapture(path) | |
| if not cap.isOpened(): | |
| raise ValueError(f"Failed to open video file: {path}") | |
| # Process all frames at 640x640 resolution for consistency | |
| frame_width, frame_height = 640, 640 | |
| out = cv2.VideoWriter( | |
| temp_output_path, | |
| cv2.VideoWriter_fourcc(*'mp4v'), # MP4 codec | |
| 30.0, # Output FPS | |
| (frame_width, frame_height) | |
| ) | |
| # Main processing loop: | |
| # 1. Read each frame | |
| # 2. Run object detection + tracking | |
| # 3. Annotate frame with boxes and IDs | |
| # 4. Collect detected classes | |
| crimes = [] # Track all detected objects | |
| start = time.time() | |
| print(f"[INFO] Processing started at {start:.2f} seconds") | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: # End of video | |
| break | |
| # Resize and run detection + tracking | |
| frame = cv2.resize(frame, (frame_width, frame_height)) | |
| results = model.track( | |
| source=frame, | |
| conf=0.7, # Minimum confidence threshold | |
| persist=True # Enable tracking across frames | |
| ) | |
| # Annotate frame with boxes and tracking IDs | |
| annotated_frame = results[0].plot() | |
| # Record detected classes | |
| for box in results[0].boxes: | |
| cls = int(box.cls) | |
| crimes.append(class_names[cls]) | |
| out.write(annotated_frame) | |
| # Clean up video resources | |
| end = time.time() | |
| print(f"[INFO] Processing finished at {end:.2f} seconds") | |
| print(f"[INFO] Total execution time: {end - start:.2f} seconds") | |
| cap.release() | |
| out.release() | |
| # Generate final output filename containing detected object labels | |
| # Format: {original_name}_{detected_objects}_output.mp4 | |
| unique_crimes = set(crimes) | |
| crimes_str = "_".join(sorted(unique_crimes)).replace(" ", "_")[:50] # truncate if needed | |
| final_output_name = f"{base_name}_{crimes_str}_output.mp4" | |
| final_output_path = os.path.join(output_dir, final_output_name) | |
| # Rename the video file | |
| os.rename(temp_output_path, final_output_path) | |
| print(f"[INFO] Detected crimes: {unique_crimes}") | |
| print(f"[INFO] Annotated video saved at: {final_output_path}") | |
| return unique_crimes, final_output_path | |
| # # Entry point | |
| # path0 = input("Enter the local path to the video file to detect objects: ") | |
| # path = path0.strip('"') # Remove extra quotes if copied from Windows | |
| # print(f"[INFO] Loading video: {path}") | |
| # detection(path) | |