Spaces:
Runtime error
Runtime error
| --- START OF FILE Fight_detec_func.py --- | |
| import tensorflow as tf | |
| from frame_slicer import extract_video_frames | |
| import cv2 | |
| import os | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| # Configuration | |
| import os | |
| MODEL_PATH = os.path.join(os.path.dirname(__file__), "trainnig_output", "final_model_2.h5") | |
| N_FRAMES = 30 | |
| IMG_SIZE = (96, 96) | |
| # Define RESULT_PATH relative to the script location | |
| RESULT_PATH = os.path.join(os.path.dirname(__file__), "results") | |
| def fight_detec(video_path: str, debug: bool = True): | |
| """Detects fight in a video and returns the result string and raw prediction score.""" | |
| class FightDetector: | |
| def __init__(self): | |
| self.model = self._load_model() | |
| def _load_model(self): | |
| # Ensure the model path exists before loading | |
| if not os.path.exists(MODEL_PATH): | |
| print(f"Error: Model file not found at {MODEL_PATH}") | |
| return None | |
| try: | |
| # Load model with compile=False if optimizer state isn't needed for inference | |
| model = tf.keras.models.load_model(MODEL_PATH, compile=False) | |
| if debug: | |
| print("\nModel loaded successfully. Input shape:", model.input_shape) | |
| return model | |
| except Exception as e: | |
| print(f"Model loading failed: {e}") | |
| return None | |
| def _extract_frames(self, video_path): | |
| frames = extract_video_frames(video_path, N_FRAMES, IMG_SIZE) | |
| if frames is None: | |
| print(f"Frame extraction returned None for {video_path}") | |
| return None | |
| if debug: | |
| blank_frames = np.all(frames == 0, axis=(1, 2, 3)).sum() | |
| if blank_frames > 0: | |
| print(f"Warning: {blank_frames} blank frames detected") | |
| # Save a sample frame for debugging only if debug is True | |
| if frames.shape[0] > 0 and not np.all(frames[0] == 0): # Avoid saving blank frame | |
| sample_frame = (frames[0] * 255).astype(np.uint8) | |
| try: | |
| os.makedirs(RESULT_PATH, exist_ok=True) # Ensure result path exists | |
| debug_frame_path = os.path.join(RESULT_PATH, 'debug_frame.jpg') | |
| cv2.imwrite(debug_frame_path, cv2.cvtColor(sample_frame, cv2.COLOR_RGB2BGR)) | |
| print(f"Debug frame saved to {debug_frame_path}") | |
| except Exception as e: | |
| print(f"Failed to save debug frame: {e}") | |
| else: | |
| print("Skipping debug frame save (first frame blank or no frames).") | |
| return frames | |
| def predict(self, video_path): | |
| if not os.path.exists(video_path): | |
| print(f"Error: Video not found at {video_path}") | |
| return "Error: Video not found", None | |
| try: | |
| frames = self._extract_frames(video_path) | |
| if frames is None: | |
| return "Error: Frame extraction failed", None | |
| if frames.shape[0] != N_FRAMES: | |
| # Pad with last frame or zeros if not enough frames were extracted | |
| print(f"Warning: Expected {N_FRAMES} frames, got {frames.shape[0]}. Padding...") | |
| if frames.shape[0] == 0: # No frames at all | |
| frames = np.zeros((N_FRAMES, *IMG_SIZE, 3), dtype=np.float32) | |
| else: # Pad with the last available frame | |
| padding_needed = N_FRAMES - frames.shape[0] | |
| last_frame = frames[-1][np.newaxis, ...] | |
| padding = np.repeat(last_frame, padding_needed, axis=0) | |
| frames = np.concatenate((frames, padding), axis=0) | |
| print(f"Frames padded to shape: {frames.shape}") | |
| if np.all(frames == 0): | |
| # Check if all frames are actually blank (can happen with padding) | |
| print("Error: All frames are blank after processing/padding.") | |
| return "Error: All frames are blank", None | |
| # Perform prediction | |
| prediction = self.model.predict(frames[np.newaxis, ...], verbose=0)[0][0] | |
| # Determine result based on threshold | |
| threshold = 0.61 # Example threshold | |
| is_fight = prediction >= threshold | |
| result = "FIGHT" if is_fight else "NORMAL" | |
| # Calculate confidence (simple distance from threshold, scaled) | |
| # Adjust scaling factor (e.g., 150) and base (e.g., 50) as needed | |
| # Ensure confidence reflects certainty (higher for values far from threshold) | |
| if is_fight: | |
| confidence = min(max((prediction - threshold) * 150 + 50, 0), 100) | |
| else: | |
| confidence = min(max((threshold - prediction) * 150 + 50, 0), 100) | |
| result_string = f"{result} ({confidence:.1f}% confidence)" | |
| if debug: | |
| print(f"Raw Prediction Score: {prediction:.4f}") | |
| self._debug_visualization(frames, prediction, result_string, video_path) | |
| return result_string, float(prediction) # Return string and raw score | |
| except Exception as e: | |
| print(f"Prediction error: {str(e)}") | |
| # Consider logging the full traceback here in a real application | |
| # import traceback | |
| # print(traceback.format_exc()) | |
| return f"Prediction error: {str(e)}", None | |
| def _debug_visualization(self, frames, score, result, video_path): | |
| # This function will only run if debug=True is passed to fight_detec | |
| print(f"\n--- Debug Visualization ---") | |
| print(f"Prediction Score: {score:.4f}") | |
| print(f"Decision: {result}") | |
| # Avoid plotting if matplotlib is not available or causes issues in deployment | |
| try: | |
| import matplotlib.pyplot as plt | |
| plt.figure(figsize=(15, 5)) | |
| num_frames_to_show = min(10, len(frames)) | |
| for i in range(num_frames_to_show): | |
| plt.subplot(2, 5, i+1) | |
| # Ensure frame values are valid for imshow (0-1 or 0-255) | |
| img_display = frames[i] | |
| if np.max(img_display) <= 1.0: # Assuming normalized float [0,1] | |
| img_display = (img_display * 255).astype(np.uint8) | |
| else: # Assuming it might already be uint8 [0,255] | |
| img_display = img_display.astype(np.uint8) | |
| plt.imshow(img_display) | |
| plt.title(f"Frame {i}\nMean: {frames[i].mean():.2f}") # Use original frame for mean | |
| plt.axis('off') | |
| plt.suptitle(f"Video: {os.path.basename(video_path)}\nPrediction: {result} (Raw Score: {score:.4f})") | |
| plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust layout | |
| # Save the visualization | |
| os.makedirs(RESULT_PATH, exist_ok=True) # Ensure result path exists again | |
| base_name = os.path.splitext(os.path.basename(video_path))[0] | |
| save_path = os.path.join(RESULT_PATH, f"{base_name}_prediction_result.png") | |
| plt.savefig(save_path) | |
| plt.close() # Close the plot to free memory | |
| print(f"Debug visualization saved to: {save_path}") | |
| except ImportError: | |
| print("Matplotlib not found. Skipping debug visualization plot.") | |
| except Exception as e: | |
| print(f"Error during debug visualization: {e}") | |
| print("--- End Debug Visualization ---") | |
| # --- Main function logic --- | |
| detector = FightDetector() | |
| if detector.model is None: | |
| # Model loading failed, return error | |
| return "Error: Model loading failed", None | |
| # Call the predict method | |
| result_str, prediction_score = detector.predict(video_path) | |
| return result_str, prediction_score | |
| # # Example usage (commented out for library use) | |
| # if __name__ == "__main__": | |
| # # Example of how to call the function | |
| # test_video = input("Enter the local path to the video file: ").strip('"') | |
| # if os.path.exists(test_video): | |
| # print(f"[INFO] Processing video: {test_video}") | |
| # result, score = fight_detec(test_video, debug=True) # Enable debug for local testing | |
| # print(f"\nFinal Result: {result}") | |
| # if score is not None: | |
| # print(f"Raw Score: {score:.4f}") | |
| # else: | |
| # print(f"Error: File not found - {test_video}") | |
| --- END OF FILE Fight_detec_func.py --- |