Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import random | |
import os | |
def extract_video_frames(video_path, n_frames=30, frame_size=(96, 96)): | |
""" | |
Extracts frames from a video, handling various lengths and potential errors. | |
Args: | |
video_path (str): Path to the video file. | |
n_frames (int): The target number of frames to extract. | |
frame_size (tuple): The target (width, height) for each frame. | |
Returns: | |
np.ndarray: An array of shape (n_frames, height, width, 3) with normalized | |
pixel values (0-1), or None if extraction fails critically. | |
Frames will be padded if the video is too short or has read errors. | |
""" | |
if not os.path.exists(video_path): | |
print(f"Error: Video file not found at {video_path}") | |
return None | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
print(f"Error: Could not open video file {video_path}") | |
return None | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
# Basic validation | |
if total_frames < 1: | |
print(f"Warning: Video has {total_frames} frames. Cannot extract.") | |
cap.release() | |
# Return array of zeros matching the expected shape | |
return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32) | |
if fps < 1: | |
print(f"Warning: Video has invalid FPS ({fps}). Proceeding, but timing might be off.") | |
# Use a default assumption if FPS is invalid but frames exist | |
fps = 30.0 # Or another sensible default | |
frames = [] | |
extracted_count = 0 | |
last_good_frame_processed = None # Store the last successfully processed frame | |
# Calculate indices of frames to attempt extraction (evenly spaced) | |
# Ensure indices are within the valid range [0, total_frames - 1] | |
indices = np.linspace(0, total_frames - 1, n_frames, dtype=int) | |
for i, frame_index in enumerate(indices): | |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index) | |
ret, frame = cap.read() | |
processed_frame = None | |
if ret and frame is not None: | |
try: | |
# Process valid frame | |
frame_resized = cv2.resize(frame, frame_size) | |
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB) | |
processed_frame = frame_rgb.astype(np.float32) / 255.0 | |
last_good_frame_processed = processed_frame # Update last good frame | |
extracted_count += 1 | |
except cv2.error as e: | |
print(f"Warning: OpenCV error processing frame {frame_index}: {e}") | |
# Fallback to last good frame if available | |
if last_good_frame_processed is not None: | |
processed_frame = last_good_frame_processed.copy() | |
else: # If no good frame seen yet, create a placeholder | |
processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32) | |
except Exception as e: | |
print(f"Warning: Unexpected error processing frame {frame_index}: {e}") | |
if last_good_frame_processed is not None: | |
processed_frame = last_good_frame_processed.copy() | |
else: | |
processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32) | |
else: | |
# Handle read failure (e.g., end of video reached early, corrupted frame) | |
print(f"Warning: Failed to read frame at index {frame_index}. Using fallback.") | |
if last_good_frame_processed is not None: | |
processed_frame = last_good_frame_processed.copy() | |
else: | |
# If read fails and no previous frame exists, use a zero frame | |
processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32) | |
frames.append(processed_frame) | |
cap.release() | |
if extracted_count == 0 and total_frames > 0: | |
print("Warning: Failed to extract or process any valid frames, returning array of zeros.") | |
# This case should ideally be covered by fallbacks, but as a safeguard: | |
return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32) | |
# Ensure the final output always has n_frames by padding if necessary | |
# (This should technically be handled by the loop logic now, but double-check) | |
final_frames = np.array(frames) | |
if final_frames.shape[0] < n_frames: | |
print(f"Warning: Padding needed, final array shape {final_frames.shape} vs target {n_frames}") | |
if final_frames.shape[0] == 0: # If somehow array is empty | |
padding = np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32) | |
else: | |
padding_needed = n_frames - final_frames.shape[0] | |
# Use the very last frame in the list (could be a fallback frame) for padding | |
last_frame_for_padding = final_frames[-1][np.newaxis, ...] | |
padding = np.repeat(last_frame_for_padding, padding_needed, axis=0) | |
final_frames = np.concatenate((final_frames, padding), axis=0) | |
elif final_frames.shape[0] > n_frames: | |
# Should not happen with linspace logic, but truncate if it does | |
print(f"Warning: More frames than expected ({final_frames.shape[0]}), truncating to {n_frames}") | |
final_frames = final_frames[:n_frames] | |
# Final check of output shape | |
if final_frames.shape != (n_frames, frame_size[1], frame_size[0], 3): | |
print(f"Error: Final frame array shape mismatch! Expected {(n_frames, frame_size[1], frame_size[0], 3)}, Got {final_frames.shape}") | |
# Attempt to reshape or return None/zeros? Returning zeros is safer. | |
return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32) | |
return final_frames | |