Spaces:
Runtime error
Runtime error
Update frame_slicer.py
Browse files- frame_slicer.py +126 -58
frame_slicer.py
CHANGED
|
@@ -1,58 +1,126 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
if
|
| 23 |
-
print(f"Error:
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
cap.
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--- START OF FILE frame_slicer.py ---
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import random
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
def extract_video_frames(video_path, n_frames=30, frame_size=(96, 96)):
|
| 9 |
+
"""
|
| 10 |
+
Extracts frames from a video, handling various lengths and potential errors.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
video_path (str): Path to the video file.
|
| 14 |
+
n_frames (int): The target number of frames to extract.
|
| 15 |
+
frame_size (tuple): The target (width, height) for each frame.
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
np.ndarray: An array of shape (n_frames, height, width, 3) with normalized
|
| 19 |
+
pixel values (0-1), or None if extraction fails critically.
|
| 20 |
+
Frames will be padded if the video is too short or has read errors.
|
| 21 |
+
"""
|
| 22 |
+
if not os.path.exists(video_path):
|
| 23 |
+
print(f"Error: Video file not found at {video_path}")
|
| 24 |
+
return None
|
| 25 |
+
|
| 26 |
+
cap = cv2.VideoCapture(video_path)
|
| 27 |
+
if not cap.isOpened():
|
| 28 |
+
print(f"Error: Could not open video file {video_path}")
|
| 29 |
+
return None
|
| 30 |
+
|
| 31 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 32 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 33 |
+
|
| 34 |
+
# Basic validation
|
| 35 |
+
if total_frames < 1:
|
| 36 |
+
print(f"Warning: Video has {total_frames} frames. Cannot extract.")
|
| 37 |
+
cap.release()
|
| 38 |
+
# Return array of zeros matching the expected shape
|
| 39 |
+
return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32)
|
| 40 |
+
if fps < 1:
|
| 41 |
+
print(f"Warning: Video has invalid FPS ({fps}). Proceeding, but timing might be off.")
|
| 42 |
+
# Use a default assumption if FPS is invalid but frames exist
|
| 43 |
+
fps = 30.0 # Or another sensible default
|
| 44 |
+
|
| 45 |
+
frames = []
|
| 46 |
+
extracted_count = 0
|
| 47 |
+
last_good_frame_processed = None # Store the last successfully processed frame
|
| 48 |
+
|
| 49 |
+
# Calculate indices of frames to attempt extraction (evenly spaced)
|
| 50 |
+
# Ensure indices are within the valid range [0, total_frames - 1]
|
| 51 |
+
indices = np.linspace(0, total_frames - 1, n_frames, dtype=int)
|
| 52 |
+
|
| 53 |
+
for i, frame_index in enumerate(indices):
|
| 54 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
|
| 55 |
+
ret, frame = cap.read()
|
| 56 |
+
|
| 57 |
+
processed_frame = None
|
| 58 |
+
if ret and frame is not None:
|
| 59 |
+
try:
|
| 60 |
+
# Process valid frame
|
| 61 |
+
frame_resized = cv2.resize(frame, frame_size)
|
| 62 |
+
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB)
|
| 63 |
+
processed_frame = frame_rgb.astype(np.float32) / 255.0
|
| 64 |
+
last_good_frame_processed = processed_frame # Update last good frame
|
| 65 |
+
extracted_count += 1
|
| 66 |
+
except cv2.error as e:
|
| 67 |
+
print(f"Warning: OpenCV error processing frame {frame_index}: {e}")
|
| 68 |
+
# Fallback to last good frame if available
|
| 69 |
+
if last_good_frame_processed is not None:
|
| 70 |
+
processed_frame = last_good_frame_processed.copy()
|
| 71 |
+
else: # If no good frame seen yet, create a placeholder
|
| 72 |
+
processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32)
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"Warning: Unexpected error processing frame {frame_index}: {e}")
|
| 75 |
+
if last_good_frame_processed is not None:
|
| 76 |
+
processed_frame = last_good_frame_processed.copy()
|
| 77 |
+
else:
|
| 78 |
+
processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32)
|
| 79 |
+
|
| 80 |
+
else:
|
| 81 |
+
# Handle read failure (e.g., end of video reached early, corrupted frame)
|
| 82 |
+
print(f"Warning: Failed to read frame at index {frame_index}. Using fallback.")
|
| 83 |
+
if last_good_frame_processed is not None:
|
| 84 |
+
processed_frame = last_good_frame_processed.copy()
|
| 85 |
+
else:
|
| 86 |
+
# If read fails and no previous frame exists, use a zero frame
|
| 87 |
+
processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32)
|
| 88 |
+
|
| 89 |
+
frames.append(processed_frame)
|
| 90 |
+
|
| 91 |
+
cap.release()
|
| 92 |
+
|
| 93 |
+
if extracted_count == 0 and total_frames > 0:
|
| 94 |
+
print("Warning: Failed to extract or process any valid frames, returning array of zeros.")
|
| 95 |
+
# This case should ideally be covered by fallbacks, but as a safeguard:
|
| 96 |
+
return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32)
|
| 97 |
+
|
| 98 |
+
# Ensure the final output always has n_frames by padding if necessary
|
| 99 |
+
# (This should technically be handled by the loop logic now, but double-check)
|
| 100 |
+
final_frames = np.array(frames)
|
| 101 |
+
if final_frames.shape[0] < n_frames:
|
| 102 |
+
print(f"Warning: Padding needed, final array shape {final_frames.shape} vs target {n_frames}")
|
| 103 |
+
if final_frames.shape[0] == 0: # If somehow array is empty
|
| 104 |
+
padding = np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32)
|
| 105 |
+
else:
|
| 106 |
+
padding_needed = n_frames - final_frames.shape[0]
|
| 107 |
+
# Use the very last frame in the list (could be a fallback frame) for padding
|
| 108 |
+
last_frame_for_padding = final_frames[-1][np.newaxis, ...]
|
| 109 |
+
padding = np.repeat(last_frame_for_padding, padding_needed, axis=0)
|
| 110 |
+
final_frames = np.concatenate((final_frames, padding), axis=0)
|
| 111 |
+
elif final_frames.shape[0] > n_frames:
|
| 112 |
+
# Should not happen with linspace logic, but truncate if it does
|
| 113 |
+
print(f"Warning: More frames than expected ({final_frames.shape[0]}), truncating to {n_frames}")
|
| 114 |
+
final_frames = final_frames[:n_frames]
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# Final check of output shape
|
| 118 |
+
if final_frames.shape != (n_frames, frame_size[1], frame_size[0], 3):
|
| 119 |
+
print(f"Error: Final frame array shape mismatch! Expected {(n_frames, frame_size[1], frame_size[0], 3)}, Got {final_frames.shape}")
|
| 120 |
+
# Attempt to reshape or return None/zeros? Returning zeros is safer.
|
| 121 |
+
return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
return final_frames
|
| 125 |
+
|
| 126 |
+
--- END OF FILE frame_slicer.py ---
|