File size: 2,269 Bytes
d66422e
 
ec744ec
 
68e425a
d66422e
ec744ec
 
 
 
 
 
 
 
 
 
d66422e
81ea024
d66422e
68e425a
ec744ec
68e425a
81ea024
68e425a
d66422e
68e425a
81ea024
68e425a
81ea024
ec744ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68e425a
ec744ec
 
 
 
 
 
68e425a
 
81ea024
68e425a
81ea024
68e425a
 
 
ec744ec
81ea024
68e425a
ec744ec
68e425a
 
ec744ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import re
import base64
import io
import torch
import gradio as gr
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor

# Load the model and processor
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_id)

def generate_model_response(image_file, user_query):
    """
    Processes the uploaded image and user query to generate a response from the model.
    
    Parameters:
    - image_file: The uploaded image file.
    - user_query: The user's question about the image.

    Returns:
    - str: The generated response from the model, formatted as HTML.
    """
    try:
        # Load and prepare the image
        raw_image = Image.open(image_file).convert("RGB")
        
        # Prepare input for the model using the processor
        conversation = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "url": "<|image|>"},  # Placeholder for image
                    {"type": "text", "text": user_query}
                ]
            }
        ]

        # Apply chat template to prepare inputs for the model
        inputs = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
        
        # Process the image and text inputs together
        inputs = processor(inputs, raw_image, return_tensors="pt").to(model.device)

        # Generate response from the model
        outputs = model.generate(**inputs)
        
        # Decode and format the response
        generated_text = processor.decode(outputs[0], skip_special_tokens=True)
        
        return generated_text
    
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"<p>An error occurred: {str(e)}</p>"

# Gradio Interface
iface = gr.Interface(
    fn=generate_model_response,
    inputs=[
        gr.Image(type="file", label="Upload Image"),
        gr.Textbox(label="Enter your question", placeholder="How many calories are in this food?")
    ],
    outputs=gr.HTML(label="Response from Model"),
)

iface.launch(share=True)