import gradio as gr import pandas as pd import joblib import datasets inputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(4,"dynamic"), label="Input Data", interactive=1)] outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Failures"])] model = joblib.load("model.pkl") # we will give our dataframe as example df = datasets.load_dataset("merve/supersoaker-failures") df = df["train"].to_pandas() def infer(input_dataframe): return pd.DataFrame(model.predict(input_dataframe)) gr.Interface(fn = infer, inputs = inputs, outputs = outputs, examples = [[df.head(2)]]).launch()