import os import sys from torchvision.transforms import functional sys.modules["torchvision.transforms.functional_tensor"] = functional from basicsr.archs.srvgg_arch import SRVGGNetCompact from gfpgan.utils import GFPGANer from realesrgan.utils import RealESRGANer import torch import cv2 import gradio as gr # 필요한 모델 다운로드 if not os.path.exists('realesr-general-x4v3.pth'): os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") if not os.path.exists('GFPGANv1.2.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") if not os.path.exists('GFPGANv1.3.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") if not os.path.exists('GFPGANv1.4.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") if not os.path.exists('RestoreFormer.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .") model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) # 이미지 저장 디렉토리에 저장하는 부분 (현재 주석 처리됨) # os.makedirs('output', exist_ok=True) def upscaler(img, version, scale): try: img = cv2.imread(img, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = 'RGBA' elif len(img.shape) == 2: img_mode = None img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) else: img_mode = None h, w = img.shape[0:2] if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) face_enhancer = GFPGANer( model_path=f'{version}.pth', upscale=2, arch='RestoreFormer' if version=='RestoreFormer' else 'clean', channel_multiplier=2, bg_upsampler=upsampler ) try: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) except RuntimeError as error: print('오류:', error) try: # 배율 조정 계수가 2 또는 0인 경우 추가 스케일링을 수행하지 않음 if scale != 2 and scale != 0: interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 h, w = img.shape[0:2] output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) except Exception as error: print('잘못된 배율 입력:', error) output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) return output except Exception as error: print('전역 예외:', error) return None, None if __name__ == "__main__": title = "이미지 업스케일러 및 복원 [GFPGAN 알고리즘]" demo = gr.Interface( upscaler, [ gr.Image(type="filepath", label="입력 이미지"), gr.Radio(['GFPGANv1.2', 'GFPGANv1.3', 'GFPGANv1.4', 'RestoreFormer'], type="value", label="버전", value="GFPGANv1.4", visible=False), gr.Number(label="배율 조정 계수", value=0, visible=False), ], [ gr.Image(type="numpy", label="출력 이미지"), ], title=title, allow_flagging="never", examples=[["예제.png", "GFPGANv1.4", 0]] ) demo.queue() demo.launch()