import os import sys from torchvision.transforms import functional sys.modules["torchvision.transforms.functional_tensor"] = functional import spaces from basicsr.archs.srvgg_arch import SRVGGNetCompact from gfpgan.utils import GFPGANer from realesrgan.utils import RealESRGANer import torch import cv2 import gradio as gr from gradio_imageslider import ImageSlider # 슬라이더 컴포넌트 추가 from PIL import Image # PIL을 사용하여 numpy 이미지를 PIL 이미지로 변환 # 필수 모델 다운로드 if not os.path.exists('realesr-general-x4v3.pth'): os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") if not os.path.exists('GFPGANv1.2.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") if not os.path.exists('GFPGANv1.3.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") if not os.path.exists('GFPGANv1.4.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") if not os.path.exists('RestoreFormer.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .") model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) # 이미지 저장 디렉토리 생성 (필요시 주석 해제) # os.makedirs('output', exist_ok=True) @spaces.GPU(duration=120) def upscaler(img, version, scale): try: # 입력된 img는 파일 경로임 image_array = cv2.imread(img, cv2.IMREAD_UNCHANGED) if image_array is None: print("이미지 로드 실패") return None, None if len(image_array.shape) == 3 and image_array.shape[2] == 4: img_mode = 'RGBA' elif len(image_array.shape) == 2: img_mode = None image_array = cv2.cvtColor(image_array, cv2.COLOR_GRAY2BGR) else: img_mode = None h, w = image_array.shape[0:2] if h < 300: image_array = cv2.resize(image_array, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) # 변경 전 원본 이미지를 RGB (또는 RGBA)로 변환 if img_mode == 'RGBA': original_rgb = cv2.cvtColor(image_array, cv2.COLOR_BGRA2RGBA) else: original_rgb = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB) face_enhancer = GFPGANer( model_path=f'{version}.pth', upscale=2, arch='RestoreFormer' if version=='RestoreFormer' else 'clean', channel_multiplier=2, bg_upsampler=upsampler ) try: _, _, output = face_enhancer.enhance(image_array, has_aligned=False, only_center_face=False, paste_back=True) except RuntimeError as error: print('오류', error) return None, None try: if scale != 2: interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 h, w = image_array.shape[0:2] output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) except Exception as error: print('잘못된 재스케일링 입력.', error) output_rgb = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) # numpy 이미지를 PIL 이미지로 변환 (슬라이더에서 type="pil" 사용) original_pil = Image.fromarray(original_rgb) output_pil = Image.fromarray(output_rgb) # 변경 전/후 이미지를 튜플로 반환하여 슬라이더에 표시 return original_pil, output_pil except Exception as error: print('전역 예외', error) return None, None if __name__ == "__main__": title = "이미지 업스케일 및 복원 [GFPGAN 알고리즘]" demo = gr.Interface( upscaler, [ gr.Image(type="filepath", label="입력"), gr.Radio(['GFPGANv1.2', 'GFPGANv1.3', 'GFPGANv1.4', 'RestoreFormer'], type="value", label="버전", value="GFPGANv1.4", visible=False), gr.Number(label="재스케일링 계수", value=0, visible=False), ], [ ImageSlider(label="출력", type="pil") ], title=title, examples=[["예제.png", "GFPGANv1.4", 0]], allow_flagging="never" ) demo.queue() demo.launch()