Kims12 commited on
Commit
aafe2e3
·
verified ·
1 Parent(s): 13892a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -503
app.py CHANGED
@@ -1,61 +1,6 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
  import openai
4
- import anthropic
5
  import os
6
- from typing import Optional
7
-
8
- #############################
9
- # [기본코드] - 수정/삭제 불가
10
- #############################
11
-
12
- # Cohere Command R+ 모델 ID 정의
13
- COHERE_MODEL = "CohereForAI/c4ai-command-r-plus-08-2024"
14
-
15
- def get_client(model_name):
16
- """
17
- 모델 이름에 맞춰 InferenceClient 생성.
18
- 토큰은 환경 변수에서 가져옴.
19
- """
20
- hf_token = os.getenv("HF_TOKEN")
21
- if not hf_token:
22
- raise ValueError("HuggingFace API 토큰이 필요합니다.")
23
- if model_name == "Cohere Command R+":
24
- model_id = COHERE_MODEL
25
- else:
26
- raise ValueError("유효하지 않은 모델 이름입니다.")
27
- return InferenceClient(model_id, token=hf_token)
28
-
29
- def respond_cohere_qna(
30
- question: str,
31
- system_message: str,
32
- max_tokens: int,
33
- temperature: float,
34
- top_p: float
35
- ):
36
- """
37
- Cohere Command R+ 모델을 이용해 한 번의 질문(question)에 대한 답변을 반환하는 함수.
38
- """
39
- model_name = "Cohere Command R+"
40
- try:
41
- client = get_client(model_name)
42
- except ValueError as e:
43
- return f"오류: {str(e)}"
44
- messages = [
45
- {"role": "system", "content": system_message},
46
- {"role": "user", "content": question}
47
- ]
48
- try:
49
- response_full = client.chat_completion(
50
- messages,
51
- max_tokens=max_tokens,
52
- temperature=temperature,
53
- top_p=top_p,
54
- )
55
- assistant_message = response_full.choices[0].message.content
56
- return assistant_message
57
- except Exception as e:
58
- return f"오류가 발생했습니다: {str(e)}"
59
 
60
  def respond_chatgpt_qna(
61
  question: str,
@@ -65,7 +10,7 @@ def respond_chatgpt_qna(
65
  top_p: float
66
  ):
67
  """
68
- ChatGPT(OpenAI) 모델을 이용해 번의 질문(question)에 대한 답변을 반환하는 함수.
69
  """
70
  openai_token = os.getenv("OPENAI_TOKEN")
71
  if not openai_token:
@@ -88,456 +33,46 @@ def respond_chatgpt_qna(
88
  except Exception as e:
89
  return f"오류가 발생했습니다: {str(e)}"
90
 
91
- def respond_deepseek_qna(
92
- question: str,
93
- system_message: str,
94
- max_tokens: int,
95
- temperature: float,
96
- top_p: float,
97
- model_name: str # 모델 이름 추가
98
- ):
99
  """
100
- DeepSeek 모델을 이용해 번의 질문(question)에 대한 답변을 반환하는 함수.
101
  """
102
- deepseek_token = os.getenv("DEEPSEEK_TOKEN")
103
- if not deepseek_token:
104
- return "DeepSeek API 토큰이 필요합니다."
105
- openai.api_key = deepseek_token
106
- openai.api_base = "https://api.deepseek.com/v1"
107
- messages = [
108
- {"role": "system", "content": system_message},
109
- {"role": "user", "content": question}
110
- ]
111
- try:
112
- response = openai.ChatCompletion.create(
113
- model=model_name, # 선택된 모델 사용
114
- messages=messages,
115
- max_tokens=max_tokens,
116
- temperature=temperature,
117
- top_p=top_p,
118
- )
119
- assistant_message = response.choices[0].message['content']
120
- return assistant_message
121
- except Exception as e:
122
- return f"오류가 발생했습니다: {str(e)}"
123
-
124
- def respond_claude_qna(
125
- question: str,
126
- system_message: str,
127
- max_tokens: int,
128
- temperature: float,
129
- top_p: float,
130
- model_name: str # 모델 이름 파라미터 추가
131
- ) -> str:
132
- """
133
- Claude API를 사용한 개선된 응답 생성 함수.
134
- """
135
- claude_api_key = os.getenv("CLAUDE_TOKEN")
136
- if not claude_api_key:
137
- return "Claude API 토큰이 필요합니다."
138
- try:
139
- client = anthropic.Anthropic(api_key=claude_api_key)
140
- message = client.messages.create(
141
- model=model_name,
142
- max_tokens=max_tokens,
143
- temperature=temperature,
144
- system=system_message,
145
- messages=[
146
- {"role": "user", "content": question}
147
- ]
148
- )
149
- return message.content[0].text
150
- except anthropic.APIError as ae:
151
- return f"Claude API 오류: {str(ae)}"
152
- except anthropic.RateLimitError:
153
- return "요청 한도를 초과했습니다. 잠시 후 다시 시도해주세요."
154
- except Exception as e:
155
- return f"예상치 못한 오류가 발생했습니다: {str(e)}"
156
-
157
- def respond_o1mini_qna(
158
- question: str,
159
- system_message: str,
160
- max_tokens: int,
161
- temperature: float
162
- ):
163
- """
164
- o1-mini 모델을 이용해 한 번의 질문(question)에 대한 답변을 반환하는 함수.
165
- o1-mini에서는 'system' 메시지를 지원하지 않으므로 system_message와 question을 하나��� 'user' 메시지로 합쳐 전달합니다.
166
- 또한, o1-mini에서는 'max_tokens' 대신 'max_completion_tokens'를 사용하며, temperature는 고정값 1만 지원합니다.
167
- """
168
- openai_token = os.getenv("OPENAI_TOKEN")
169
- if not openai_token:
170
- return "OpenAI API 토큰이 필요합니다."
171
- openai.api_key = openai_token
172
- combined_message = f"{system_message}\n\n{question}"
173
- messages = [{"role": "user", "content": combined_message}]
174
- try:
175
- response = openai.ChatCompletion.create(
176
- model="o1-mini",
177
- messages=messages,
178
- max_completion_tokens=max_tokens,
179
- temperature=1, # 고정된 값 1 사용
180
- )
181
- assistant_message = response.choices[0].message['content']
182
- return assistant_message
183
- except Exception as e:
184
- return f"오류가 발생했습니다: {str(e)}"
185
-
186
- def respond_gemini_qna(
187
- question: str,
188
- system_message: str,
189
- max_tokens: int,
190
- temperature: float,
191
- top_p: float, # top_p는 Gemini API에서 지원되면 전달됩니다.
192
- model_id: str
193
- ):
194
- """
195
- Gemini 모델(예: "gemini-2.0-flash", "gemini-2.0-flash-lite-preview-02-05")을 이용해
196
- 질문(question)에 대한 답변을 반환하는 함수.
197
- 최신 google-generativeai 라이브러리를 사용합니다.
198
- """
199
- import os
200
- try:
201
- import google.generativeai as genai
202
- except ModuleNotFoundError:
203
- return ("오류가 발생했습니다: 'google-generativeai' 모듈을 찾을 수 없습니다. "
204
- "해결 방법: 'pip install --upgrade google-generativeai' 를 실행하여 설치해주세요.")
205
-
206
- gemini_api_key = os.getenv("GEMINI_API_KEY")
207
- if not gemini_api_key:
208
- return "Gemini API 토큰이 필요합니다."
209
-
210
- # API 키 설정
211
- genai.configure(api_key=gemini_api_key)
212
-
213
- # system_message와 question을 하나의 프롬프트로 결합
214
- prompt = f"{system_message}\n\n{question}"
215
-
216
- try:
217
- # 최신 SDK에서는 GenerativeModel 클래스를 사용합니다.
218
- model = genai.GenerativeModel(model_name=model_id)
219
- response = model.generate_content(prompt)
220
- return response.text
221
- except Exception as e:
222
- return f"오류가 발생했습니다: {str(e)}"
223
-
224
- #############################
225
- # [기본코드] UI 부분 - 수정/삭제 불가 (탭 순서: OpenAI, Gemini, Claude, DeepSeek, Cohere Command R+)
226
- #############################
227
 
228
  with gr.Blocks() as demo:
229
- gr.Markdown("# LLM 플레이그라운드")
230
-
231
- #################
232
- # OpenAI (gpt-4o-mini / o1-mini 통합)
233
- #################
234
- with gr.Tab("OpenAI"):
235
- openai_model_radio = gr.Radio(
236
- choices=["gpt-4o-mini", "o1-mini"],
237
- label="모델 선택",
238
- value="gpt-4o-mini"
239
- )
240
- with gr.Column(visible=True) as chatgpt_ui:
241
- chatgpt_input1_o = gr.Textbox(label="입력1", lines=1)
242
- chatgpt_input2_o = gr.Textbox(label="입력2", lines=1)
243
- chatgpt_input3_o = gr.Textbox(label="입력3", lines=1)
244
- chatgpt_input4_o = gr.Textbox(label="입력4", lines=1)
245
- chatgpt_input5_o = gr.Textbox(label="입력5", lines=1)
246
- chatgpt_answer_output_o = gr.Textbox(label="결과", lines=5, interactive=False)
247
- with gr.Accordion("고급 설정 (gpt-4o-mini)", open=False):
248
- chatgpt_system_message_o = gr.Textbox(
249
- value="""반드시 한글로 답변할 것.
250
- 너는 ChatGPT, OpenAI에서 개발한 언어 모델이다.
251
- 내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
252
- """,
253
- label="System Message",
254
- lines=3
255
- )
256
- chatgpt_max_tokens_o = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens")
257
- chatgpt_temperature_o = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
258
- chatgpt_top_p_o = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
259
- chatgpt_submit_button_o = gr.Button("전송")
260
-
261
- def merge_and_call_chatgpt_o(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_):
262
- question = " ".join([i1, i2, i3, i4, i5])
263
- return respond_chatgpt_qna(
264
- question=question,
265
- system_message=sys_msg,
266
- max_tokens=mt,
267
- temperature=temp,
268
- top_p=top_p_
269
- )
270
- chatgpt_submit_button_o.click(
271
- fn=merge_and_call_chatgpt_o,
272
- inputs=[
273
- chatgpt_input1_o, chatgpt_input2_o, chatgpt_input3_o, chatgpt_input4_o, chatgpt_input5_o,
274
- chatgpt_system_message_o,
275
- chatgpt_max_tokens_o,
276
- chatgpt_temperature_o,
277
- chatgpt_top_p_o
278
- ],
279
- outputs=chatgpt_answer_output_o
280
- )
281
-
282
- with gr.Column(visible=False) as o1mini_ui:
283
- o1mini_input1_o = gr.Textbox(label="입력1", lines=1)
284
- o1mini_input2_o = gr.Textbox(label="입력2", lines=1)
285
- o1mini_input3_o = gr.Textbox(label="입력3", lines=1)
286
- o1mini_input4_o = gr.Textbox(label="입력4", lines=1)
287
- o1mini_input5_o = gr.Textbox(label="입력5", lines=1)
288
- o1mini_answer_output_o = gr.Textbox(label="결과", lines=5, interactive=False)
289
- with gr.Accordion("고급 설정 (o1-mini)", open=False):
290
- o1mini_system_message_o = gr.Textbox(
291
- value="""반드시 한글로 답변할 것.
292
- 너는 o1-mini, OpenAI에서 개발한 경량 언어 모델이다.
293
- 내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
294
- """,
295
- label="System Message",
296
- lines=3
297
- )
298
- o1mini_max_tokens_o = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens")
299
- o1mini_temperature_o = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
300
- o1mini_submit_button_o = gr.Button("전송")
301
-
302
- def merge_and_call_o1mini_o(i1, i2, i3, i4, i5, sys_msg, mt, temp):
303
- question = " ".join([i1, i2, i3, i4, i5])
304
- return respond_o1mini_qna(
305
- question=question,
306
- system_message=sys_msg,
307
- max_tokens=mt,
308
- temperature=temp
309
- )
310
- o1mini_submit_button_o.click(
311
- fn=merge_and_call_o1mini_o,
312
- inputs=[
313
- o1mini_input1_o, o1mini_input2_o, o1mini_input3_o, o1mini_input4_o, o1mini_input5_o,
314
- o1mini_system_message_o,
315
- o1mini_max_tokens_o,
316
- o1mini_temperature_o
317
- ],
318
- outputs=o1mini_answer_output_o
319
- )
320
-
321
- def update_openai_ui(model_choice):
322
- if model_choice == "gpt-4o-mini":
323
- return gr.update(visible=True), gr.update(visible=False)
324
- else:
325
- return gr.update(visible=False), gr.update(visible=True)
326
-
327
- openai_model_radio.change(
328
- fn=update_openai_ui,
329
- inputs=openai_model_radio,
330
- outputs=[chatgpt_ui, o1mini_ui]
331
- )
332
-
333
- #################
334
- # Gemini 탭
335
- #################
336
- with gr.Tab("Gemini"):
337
- gemini_model_radio = gr.Radio(
338
- choices=["gemini-2.0-flash", "gemini-2.0-flash-lite-preview-02-05"],
339
- label="모델 선택",
340
- value="gemini-2.0-flash"
341
- )
342
- gemini_input1 = gr.Textbox(label="입력1", lines=1)
343
- gemini_input2 = gr.Textbox(label="입력2", lines=1)
344
- gemini_input3 = gr.Textbox(label="입력3", lines=1)
345
- gemini_input4 = gr.Textbox(label="입력4", lines=1)
346
- gemini_input5 = gr.Textbox(label="입력5", lines=1)
347
- gemini_answer_output = gr.Textbox(label="결과", lines=5, interactive=False)
348
- with gr.Accordion("고급 설정 (Gemini)", open=False):
349
- gemini_system_message = gr.Textbox(
350
- value="""반드시 한글로 답변할 것.
351
- 너는 Gemini 모델이다.
352
- 내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
353
- """,
354
- label="System Message",
355
- lines=3
356
- )
357
- gemini_max_tokens = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens")
358
- gemini_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
359
- gemini_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
360
- gemini_submit_button = gr.Button("전송")
361
-
362
- def merge_and_call_gemini(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_, model_radio):
363
- question = " ".join([i1, i2, i3, i4, i5])
364
- return respond_gemini_qna(
365
- question=question,
366
- system_message=sys_msg,
367
- max_tokens=mt,
368
- temperature=temp,
369
- top_p=top_p_,
370
- model_id=model_radio
371
- )
372
- gemini_submit_button.click(
373
- fn=merge_and_call_gemini,
374
- inputs=[
375
- gemini_input1, gemini_input2, gemini_input3, gemini_input4, gemini_input5,
376
- gemini_system_message,
377
- gemini_max_tokens,
378
- gemini_temperature,
379
- gemini_top_p,
380
- gemini_model_radio
381
- ],
382
- outputs=gemini_answer_output
383
- )
384
-
385
- #################
386
- # Claude 탭
387
- #################
388
- with gr.Tab("Claude"):
389
- claude_model_radio = gr.Radio(
390
- choices=[
391
- "claude-3-haiku-20240307",
392
- "claude-3-5-haiku-20241022",
393
- "claude-3-5-sonnet-20241022"
394
- ],
395
- label="모델 선택",
396
- value="claude-3-5-sonnet-20241022"
397
- )
398
- claude_input1 = gr.Textbox(label="입력1", lines=1)
399
- claude_input2 = gr.Textbox(label="입력2", lines=1)
400
- claude_input3 = gr.Textbox(label="입력3", lines=1)
401
- claude_input4 = gr.Textbox(label="입력4", lines=1)
402
- claude_input5 = gr.Textbox(label="입력5", lines=1)
403
- claude_answer_output = gr.Textbox(label="결과", interactive=False, lines=5)
404
- with gr.Accordion("고급 설정 (Claude)", open=False):
405
- claude_system_message = gr.Textbox(
406
- label="System Message",
407
- value="""반드시 한글로 답변할 것.
408
- 너는 Anthropic에서 개발한 클로드이다.
409
- 최대한 정확하고 친절하게 답변하라.
410
- """,
411
- lines=3
412
- )
413
- claude_max_tokens = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens")
414
- claude_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
415
- claude_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
416
- claude_submit_button = gr.Button("전송")
417
- def merge_and_call_claude(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_, model_radio):
418
- question = " ".join([i1, i2, i3, i4, i5])
419
- return respond_claude_qna(
420
- question=question,
421
- system_message=sys_msg,
422
- max_tokens=mt,
423
- temperature=temp,
424
- top_p=top_p_,
425
- model_name=model_radio
426
- )
427
- claude_submit_button.click(
428
- fn=merge_and_call_claude,
429
- inputs=[
430
- claude_input1, claude_input2, claude_input3, claude_input4, claude_input5,
431
- claude_system_message,
432
- claude_max_tokens,
433
- claude_temperature,
434
- claude_top_p,
435
- claude_model_radio
436
- ],
437
- outputs=claude_answer_output
438
- )
439
-
440
- #################
441
- # DeepSeek 탭
442
- #################
443
- with gr.Tab("DeepSeek"):
444
- deepseek_model_radio = gr.Radio(
445
- choices=["V3 (deepseek-chat)", "R1 (deepseek-reasoner)"],
446
- label="모델 선택",
447
- value="V3 (deepseek-chat)"
448
- )
449
- deepseek_input1 = gr.Textbox(label="입력1", lines=1)
450
- deepseek_input2 = gr.Textbox(label="입력2", lines=1)
451
- deepseek_input3 = gr.Textbox(label="입력3", lines=1)
452
- deepseek_input4 = gr.Textbox(label="입력4", lines=1)
453
- deepseek_input5 = gr.Textbox(label="입력5", lines=1)
454
- deepseek_answer_output = gr.Textbox(label="결과", lines=5, interactive=False)
455
- with gr.Accordion("고급 설정 (DeepSeek)", open=False):
456
- deepseek_system_message = gr.Textbox(
457
- value="""반드시 한글로 답변할 것.
458
- 너는 DeepSeek-V3, 최고의 언어 모델이다.
459
- 내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
460
- """,
461
- label="System Message",
462
- lines=3
463
- )
464
- deepseek_max_tokens = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens")
465
- deepseek_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
466
- deepseek_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
467
- deepseek_submit_button = gr.Button("전송")
468
- def merge_and_call_deepseek(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_, model_radio):
469
- if model_radio == "V3 (deepseek-chat)":
470
- model_name = "deepseek-chat"
471
- else:
472
- model_name = "deepseek-reasoner"
473
- question = " ".join([i1, i2, i3, i4, i5])
474
- return respond_deepseek_qna(
475
- question=question,
476
- system_message=sys_msg,
477
- max_tokens=mt,
478
- temperature=temp,
479
- top_p=top_p_,
480
- model_name=model_name
481
- )
482
- deepseek_submit_button.click(
483
- fn=merge_and_call_deepseek,
484
- inputs=[
485
- deepseek_input1, deepseek_input2, deepseek_input3, deepseek_input4, deepseek_input5,
486
- deepseek_system_message,
487
- deepseek_max_tokens,
488
- deepseek_temperature,
489
- deepseek_top_p,
490
- deepseek_model_radio
491
- ],
492
- outputs=deepseek_answer_output
493
- )
494
-
495
- #################
496
- # Cohere Command R+ 탭
497
- #################
498
- with gr.Tab("Cohere Command R+"):
499
- cohere_input1 = gr.Textbox(label="입력1", lines=1)
500
- cohere_input2 = gr.Textbox(label="입력2", lines=1)
501
- cohere_input3 = gr.Textbox(label="입력3", lines=1)
502
- cohere_input4 = gr.Textbox(label="입력4", lines=1)
503
- cohere_input5 = gr.Textbox(label="입력5", lines=1)
504
- cohere_answer_output = gr.Textbox(label="결과", lines=5, interactive=False)
505
- with gr.Accordion("고급 설정 (Cohere)", open=False):
506
- cohere_system_message = gr.Textbox(
507
- value="""반드시 한글로 답변할 것.
508
- 너는 최고의 비서이다.
509
- 내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
510
- """,
511
- label="System Message",
512
- lines=3
513
- )
514
- cohere_max_tokens = gr.Slider(minimum=100, maximum=10000, value=4000, step=100, label="Max Tokens")
515
- cohere_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
516
- cohere_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
517
- cohere_submit_button = gr.Button("전송")
518
- def merge_and_call_cohere(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_):
519
- question = " ".join([i1, i2, i3, i4, i5])
520
- return respond_cohere_qna(
521
- question=question,
522
- system_message=sys_msg,
523
- max_tokens=mt,
524
- temperature=temp,
525
- top_p=top_p_
526
- )
527
- cohere_submit_button.click(
528
- fn=merge_and_call_cohere,
529
- inputs=[
530
- cohere_input1, cohere_input2, cohere_input3, cohere_input4, cohere_input5,
531
- cohere_system_message,
532
- cohere_max_tokens,
533
- cohere_temperature,
534
- cohere_top_p
535
- ],
536
- outputs=cohere_answer_output
537
- )
538
 
539
- #############################
540
- # 메인 실행부
541
- #############################
542
  if __name__ == "__main__":
543
- demo.launch()
 
1
  import gradio as gr
 
2
  import openai
 
3
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  def respond_chatgpt_qna(
6
  question: str,
 
10
  top_p: float
11
  ):
12
  """
13
+ OpenAI gpt-4o-mini 모델을 이용해 질문에 대한 답변을 반환하는 함수.
14
  """
15
  openai_token = os.getenv("OPENAI_TOKEN")
16
  if not openai_token:
 
33
  except Exception as e:
34
  return f"오류가 발생했습니다: {str(e)}"
35
 
36
+ def merge_and_call(tone: str, ref1: str, ref2: str, ref3: str):
 
 
 
 
 
 
 
37
  """
38
+ 사용자가 선택한 말투와 참조글들을 하나의 프롬프트로 합쳐 gpt-4o-mini 모델에 전달하는 함수.
39
  """
40
+ # 간단한 프롬프트 생성
41
+ question = f"말투: {tone}\n참조글 1: {ref1}\n참조글 2: {ref2}\n참조글 3: {ref3}"
42
+ # 고급 설정은 코드 내부에 기본값으로 지정 (UI에는 노출되지 않음)
43
+ system_message = "아래의 참조글들을 참고하여 블로그 글을 생성하라."
44
+ max_tokens = 2000
45
+ temperature = 0.7
46
+ top_p = 0.95
47
+ return respond_chatgpt_qna(
48
+ question=question,
49
+ system_message=system_message,
50
+ max_tokens=max_tokens,
51
+ temperature=temperature,
52
+ top_p=top_p
53
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  with gr.Blocks() as demo:
56
+ gr.Markdown("# 블로그 생성기")
57
+
58
+ # 입력 항목 구성
59
+ tone_radio = gr.Radio(
60
+ choices=["친근하게", "일반적인", "전문적인"],
61
+ label="말투바꾸기",
62
+ value="일반적인"
63
+ )
64
+ ref1_text = gr.Textbox(label="참조글 1", lines=5)
65
+ ref2_text = gr.Textbox(label="참조글 2", lines=5)
66
+ ref3_text = gr.Textbox(label="참조글 3", lines=5)
67
+ answer_output = gr.Textbox(label="결과", lines=10, interactive=False)
68
+
69
+ submit_button = gr.Button("전송")
70
+
71
+ submit_button.click(
72
+ fn=merge_and_call,
73
+ inputs=[tone_radio, ref1_text, ref2_text, ref3_text],
74
+ outputs=answer_output
75
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
 
 
 
77
  if __name__ == "__main__":
78
+ demo.launch()