File size: 14,111 Bytes
d5fb63f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9c589
d5fb63f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9c589
d5fb63f
 
 
 
 
1a9c589
d5fb63f
c850803
 
d5fb63f
 
1a9c589
d5fb63f
 
 
c850803
d5fb63f
 
 
 
1a9c589
 
 
d5fb63f
1a9c589
d5fb63f
1a9c589
d5fb63f
 
 
 
 
 
1a9c589
d5fb63f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c850803
d5fb63f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c850803
d5fb63f
 
 
c850803
d5fb63f
 
 
 
 
 
 
 
 
 
 
c850803
d5fb63f
 
c850803
d5fb63f
 
 
 
 
 
c850803
d5fb63f
 
2c541cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9c589
ce7fa06
c850803
 
 
 
 
ce7fa06
 
 
 
c850803
 
 
 
 
 
 
 
 
d5fb63f
1a9c589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c541cf
1a9c589
110447f
 
 
 
 
ad33187
1a9c589
ad33187
 
 
 
110447f
 
 
ad33187
 
1a9c589
ad33187
 
 
1a9c589
184aac1
1a9c589
d5fb63f
1a9c589
110447f
1a9c589
 
d5fb63f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import gradio as gr
import requests
from bs4 import BeautifulSoup
import urllib.parse  # iframe 경둜 보정을 μœ„ν•œ λͺ¨λ“ˆ
import re
import logging
import tempfile
import pandas as pd
import mecab  # python‑mecab‑ko 라이브러리 μ‚¬μš©
import os
import time
import hmac
import hashlib
import base64

# 디버깅(둜그)용 ν•¨μˆ˜
def debug_log(message: str):
    print(f"[DEBUG] {message}")

# --- 넀이버 λΈ”λ‘œκ·Έ μŠ€ν¬λž˜ν•‘ ---
def scrape_naver_blog(url: str) -> str:
    debug_log("scrape_naver_blog ν•¨μˆ˜ μ‹œμž‘")
    debug_log(f"μš”μ²­λ°›μ€ URL: {url}")
    headers = {
        "User-Agent": (
            "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
            "AppleWebKit/537.36 (KHTML, like Gecko) "
            "Chrome/96.0.4664.110 Safari/537.36"
        )
    }
    try:
        response = requests.get(url, headers=headers)
        debug_log("HTTP GET μš”μ²­(메인 νŽ˜μ΄μ§€) μ™„λ£Œ")
        if response.status_code != 200:
            debug_log(f"μš”μ²­ μ‹€νŒ¨, μƒνƒœμ½”λ“œ: {response.status_code}")
            return f"였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. μƒνƒœμ½”λ“œ: {response.status_code}"
        soup = BeautifulSoup(response.text, "html.parser")
        debug_log("HTML νŒŒμ‹±(메인 νŽ˜μ΄μ§€) μ™„λ£Œ")
        iframe = soup.select_one("iframe#mainFrame")
        if not iframe:
            debug_log("iframe#mainFrame νƒœκ·Έλ₯Ό 찾을 수 μ—†μŠ΅λ‹ˆλ‹€.")
            return "λ³Έλ¬Έ iframe을 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
        iframe_src = iframe.get("src")
        if not iframe_src:
            debug_log("iframe srcκ°€ μ‘΄μž¬ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.")
            return "λ³Έλ¬Έ iframe의 srcλ₯Ό 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
        parsed_iframe_url = urllib.parse.urljoin(url, iframe_src)
        debug_log(f"iframe νŽ˜μ΄μ§€ μš”μ²­ URL: {parsed_iframe_url}")
        iframe_response = requests.get(parsed_iframe_url, headers=headers)
        debug_log("HTTP GET μš”μ²­(iframe νŽ˜μ΄μ§€) μ™„λ£Œ")
        if iframe_response.status_code != 200:
            debug_log(f"iframe μš”μ²­ μ‹€νŒ¨, μƒνƒœμ½”λ“œ: {iframe_response.status_code}")
            return f"iframeμ—μ„œ 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. μƒνƒœμ½”λ“œ: {iframe_response.status_code}"
        iframe_soup = BeautifulSoup(iframe_response.text, "html.parser")
        debug_log("HTML νŒŒμ‹±(iframe νŽ˜μ΄μ§€) μ™„λ£Œ")
        title_div = iframe_soup.select_one('.se-module.se-module-text.se-title-text')
        title = title_div.get_text(strip=True) if title_div else "제λͺ©μ„ 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
        debug_log(f"μΆ”μΆœλœ 제λͺ©: {title}")
        content_div = iframe_soup.select_one('.se-main-container')
        if content_div:
            content = content_div.get_text("\n", strip=True)
        else:
            content = "본문을 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
        debug_log("λ³Έλ¬Έ μΆ”μΆœ μ™„λ£Œ")
        result = f"[제λͺ©]\n{title}\n\n[λ³Έλ¬Έ]\n{content}"
        debug_log("제λͺ©κ³Ό λ³Έλ¬Έ ν•©μΉ¨ μ™„λ£Œ")
        return result
    except Exception as e:
        debug_log(f"μ—λŸ¬ λ°œμƒ: {str(e)}")
        return f"μŠ€ν¬λž˜ν•‘ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"

# --- ν˜•νƒœμ†Œ 뢄석 (μ°Έμ‘°μ½”λ“œ-1) ---
def analyze_text(text: str):
    logging.basicConfig(level=logging.DEBUG)
    logger = logging.getLogger(__name__)
    logger.debug("원본 ν…μŠ€νŠΈ: %s", text)
    filtered_text = re.sub(r'[^κ°€-힣]', '', text)
    logger.debug("ν•„ν„°λ§λœ ν…μŠ€νŠΈ: %s", filtered_text)
    if not filtered_text:
        logger.debug("μœ νš¨ν•œ ν•œκ΅­μ–΄ ν…μŠ€νŠΈκ°€ μ—†μŒ.")
        return pd.DataFrame(columns=["단어", "λΉˆλ„μˆ˜"]), ""
    mecab_instance = mecab.MeCab()
    tokens = mecab_instance.pos(filtered_text)
    logger.debug("ν˜•νƒœμ†Œ 뢄석 κ²°κ³Ό: %s", tokens)
    freq = {}
    for word, pos in tokens:
        if word and word.strip() and pos.startswith("NN"):
            freq[word] = freq.get(word, 0) + 1
            logger.debug("단어: %s, ν’ˆμ‚¬: %s, λΉˆλ„: %d", word, pos, freq[word])
    sorted_freq = sorted(freq.items(), key=lambda x: x[1], reverse=True)
    logger.debug("μ •λ ¬λœ 단어 λΉˆλ„: %s", sorted_freq)
    df = pd.DataFrame(sorted_freq, columns=["단어", "λΉˆλ„μˆ˜"])
    logger.debug("ν˜•νƒœμ†Œ 뢄석 DataFrame 생성됨, shape: %s", df.shape)
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx")
    df.to_excel(temp_file.name, index=False, engine='openpyxl')
    temp_file.close()
    logger.debug("Excel 파일 생성됨: %s", temp_file.name)
    return df, temp_file.name

# --- 넀이버 검색 및 κ΄‘κ³  API κ΄€λ ¨ (μ°Έμ‘°μ½”λ“œ-2) ---
def generate_signature(timestamp, method, uri, secret_key):
    message = f"{timestamp}.{method}.{uri}"
    digest = hmac.new(secret_key.encode("utf-8"), message.encode("utf-8"), hashlib.sha256).digest()
    return base64.b64encode(digest).decode()

def get_header(method, uri, api_key, secret_key, customer_id):
    timestamp = str(round(time.time() * 1000))
    signature = generate_signature(timestamp, method, uri, secret_key)
    return {
        "Content-Type": "application/json; charset=UTF-8",
        "X-Timestamp": timestamp,
        "X-API-KEY": api_key,
        "X-Customer": str(customer_id),
        "X-Signature": signature
    }

def fetch_related_keywords(keyword):
    debug_log(f"fetch_related_keywords 호좜, ν‚€μ›Œλ“œ: {keyword}")
    API_KEY = os.environ["NAVER_API_KEY"]
    SECRET_KEY = os.environ["NAVER_SECRET_KEY"]
    CUSTOMER_ID = os.environ["NAVER_CUSTOMER_ID"]
    BASE_URL = "https://api.naver.com"
    uri = "/keywordstool"
    method = "GET"
    headers = get_header(method, uri, API_KEY, SECRET_KEY, CUSTOMER_ID)
    params = {
        "hintKeywords": [keyword],
        "showDetail": "1"
    }
    response = requests.get(BASE_URL + uri, params=params, headers=headers)
    data = response.json()
    if "keywordList" not in data:
        return pd.DataFrame()
    df = pd.DataFrame(data["keywordList"])
    if len(df) > 100:
        df = df.head(100)
    def parse_count(x):
        try:
            return int(str(x).replace(",", ""))
        except:
            return 0
    df["PCμ›”κ²€μƒ‰λŸ‰"] = df["monthlyPcQcCnt"].apply(parse_count)
    df["λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰"] = df["monthlyMobileQcCnt"].apply(parse_count)
    df["ν† νƒˆμ›”κ²€μƒ‰λŸ‰"] = df["PCμ›”κ²€μƒ‰λŸ‰"] + df["λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰"]
    df.rename(columns={"relKeyword": "μ •λ³΄ν‚€μ›Œλ“œ"}, inplace=True)
    result_df = df[["μ •λ³΄ν‚€μ›Œλ“œ", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰"]]
    debug_log("fetch_related_keywords μ™„λ£Œ")
    return result_df

def fetch_blog_count(keyword):
    debug_log(f"fetch_blog_count 호좜, ν‚€μ›Œλ“œ: {keyword}")
    client_id = os.environ["NAVER_SEARCH_CLIENT_ID"]
    client_secret = os.environ["NAVER_SEARCH_CLIENT_SECRET"]
    url = "https://openapi.naver.com/v1/search/blog.json"
    headers = {
        "X-Naver-Client-Id": client_id,
        "X-Naver-Client-Secret": client_secret
    }
    params = {"query": keyword, "display": 1}
    response = requests.get(url, headers=headers, params=params)
    if response.status_code == 200:
        data = response.json()
        debug_log(f"fetch_blog_count κ²°κ³Ό: {data.get('total', 0)}")
        return data.get("total", 0)
    else:
        debug_log(f"fetch_blog_count 였λ₯˜, μƒνƒœμ½”λ“œ: {response.status_code}")
        return 0

def create_excel_file(df):
    with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
        excel_path = tmp.name
    df.to_excel(excel_path, index=False)
    debug_log(f"Excel 파일 생성됨: {excel_path}")
    return excel_path

def process_keyword(keywords: str, include_related: bool):
    debug_log(f"process_keyword 호좜, ν‚€μ›Œλ“œλ“€: {keywords}, 연관검색어 포함: {include_related}")
    input_keywords = [k.strip() for k in keywords.splitlines() if k.strip()]
    result_dfs = []
    for idx, kw in enumerate(input_keywords):
        df_kw = fetch_related_keywords(kw)
        if df_kw.empty:
            continue
        row_kw = df_kw[df_kw["μ •λ³΄ν‚€μ›Œλ“œ"] == kw]
        if not row_kw.empty:
            result_dfs.append(row_kw)
        else:
            result_dfs.append(df_kw.head(1))
        if include_related and idx == 0:
            df_related = df_kw[df_kw["μ •λ³΄ν‚€μ›Œλ“œ"] != kw]
            if not df_related.empty:
                result_dfs.append(df_related)
    if result_dfs:
        result_df = pd.concat(result_dfs, ignore_index=True)
        result_df.drop_duplicates(subset=["μ •λ³΄ν‚€μ›Œλ“œ"], inplace=True)
    else:
        result_df = pd.DataFrame(columns=["μ •λ³΄ν‚€μ›Œλ“œ", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰"])
    result_df["λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"] = result_df["μ •λ³΄ν‚€μ›Œλ“œ"].apply(fetch_blog_count)
    result_df.sort_values(by="ν† νƒˆμ›”κ²€μƒ‰λŸ‰", ascending=False, inplace=True)
    debug_log("process_keyword μ™„λ£Œ")
    return result_df, create_excel_file(result_df)

# --- ν˜•νƒœμ†Œ 뢄석과 κ²€μƒ‰λŸ‰/λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜ 병합 ---
def morphological_analysis_and_enrich(text: str, remove_freq1: bool):
    debug_log("morphological_analysis_and_enrich ν•¨μˆ˜ μ‹œμž‘")
    df_freq, _ = analyze_text(text)
    if df_freq.empty:
        debug_log("ν˜•νƒœμ†Œ 뢄석 κ²°κ³Όκ°€ 빈 λ°μ΄ν„°ν”„λ ˆμž„μž…λ‹ˆλ‹€.")
        return df_freq, ""
    if remove_freq1:
        before_shape = df_freq.shape
        df_freq = df_freq[df_freq["λΉˆλ„μˆ˜"] != 1]
        debug_log(f"λΉˆλ„μˆ˜ 1 제거 적용됨. {before_shape} -> {df_freq.shape}")
    keywords = "\n".join(df_freq["단어"].tolist())
    debug_log(f"λΆ„μ„λœ ν‚€μ›Œλ“œ: {keywords}")
    df_keyword_info, _ = process_keyword(keywords, include_related=False)
    debug_log("κ²€μƒ‰λŸ‰ 및 λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜ 쑰회 μ™„λ£Œ")
    merged_df = pd.merge(df_freq, df_keyword_info, left_on="단어", right_on="μ •λ³΄ν‚€μ›Œλ“œ", how="left")
    merged_df.drop(columns=["μ •λ³΄ν‚€μ›Œλ“œ"], inplace=True)
    merged_excel_path = create_excel_file(merged_df)
    debug_log("morphological_analysis_and_enrich ν•¨μˆ˜ μ™„λ£Œ")
    return merged_df, merged_excel_path

# --- 톡합 뢄석 (ν˜•νƒœμ†Œ 뢄석 + 직접 μž…λ ₯ ν‚€μ›Œλ“œ) ---
def combined_analysis(blog_text: str, remove_freq1: bool, direct_keyword_input: str):
    debug_log("combined_analysis ν•¨μˆ˜ μ‹œμž‘")
    # ν˜•νƒœμ†Œ 뢄석 및 κ²€μƒ‰λŸ‰/λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜ 병합 κ²°κ³Ό
    merged_df, _ = morphological_analysis_and_enrich(blog_text, remove_freq1)
    # 결과에 'μ§μ ‘μž…λ ₯' 컬럼 μΆ”κ°€ (μ΄ˆκΈ°κ°’: 빈 λ¬Έμžμ—΄)
    if "μ§μ ‘μž…λ ₯" not in merged_df.columns:
        merged_df["μ§μ ‘μž…λ ₯"] = ""
    # 직접 μž…λ ₯ν•œ ν‚€μ›Œλ“œ λͺ©λ‘ (μ—”ν„° λ˜λŠ” ','둜 ꡬ뢄)
    direct_keywords = re.split(r'[\n,]+', direct_keyword_input)
    direct_keywords = [kw.strip() for kw in direct_keywords if kw.strip()]
    debug_log(f"μž…λ ₯된 직접 ν‚€μ›Œλ“œ: {direct_keywords}")
    for dk in direct_keywords:
        if dk in merged_df["단어"].values:
            merged_df.loc[merged_df["단어"] == dk, "μ§μ ‘μž…λ ₯"] = "μ§μ ‘μž…λ ₯"
        else:
            freq = blog_text.count(dk)
            df_direct, _ = process_keyword(dk, include_related=False)
            if (not df_direct.empty) and (dk in df_direct["μ •λ³΄ν‚€μ›Œλ“œ"].values):
                row = df_direct[df_direct["μ •λ³΄ν‚€μ›Œλ“œ"] == dk].iloc[0]
                pc = row.get("PCμ›”κ²€μƒ‰λŸ‰", None)
                mobile = row.get("λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", None)
                total = row.get("ν† νƒˆμ›”κ²€μƒ‰λŸ‰", None)
                blog_count = row.get("λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜", None)
            else:
                pc = mobile = total = blog_count = None
            new_row = {
                "단어": dk,
                "λΉˆλ„μˆ˜": freq,
                "PCμ›”κ²€μƒ‰λŸ‰": pc,
                "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰": mobile,
                "ν† νƒˆμ›”κ²€μƒ‰λŸ‰": total,
                "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜": blog_count,
                "μ§μ ‘μž…λ ₯": "μ§μ ‘μž…λ ₯"
            }
            merged_df = pd.concat([merged_df, pd.DataFrame([new_row])], ignore_index=True)
    merged_df = merged_df.sort_values(by="λΉˆλ„μˆ˜", ascending=False).reset_index(drop=True)
    combined_excel = create_excel_file(merged_df)
    debug_log("combined_analysis ν•¨μˆ˜ μ™„λ£Œ")
    return merged_df, combined_excel

# --- μŠ€ν¬λž˜ν•‘ μ‹€ν–‰ ---
def fetch_blog_content(url: str):
    debug_log("fetch_blog_content ν•¨μˆ˜ μ‹œμž‘")
    content = scrape_naver_blog(url)
    debug_log("fetch_blog_content ν•¨μˆ˜ μ™„λ£Œ")
    return content

# --- Gradio μΈν„°νŽ˜μ΄μŠ€ ꡬ성 ---
with gr.Blocks(title="넀이버 λΈ”λ‘œκ·Έ ν˜•νƒœμ†Œ 뢄석 슀페이슀", css=".gradio-container { max-width: 960px; margin: auto; }") as demo:
    gr.Markdown("# 넀이버 λΈ”λ‘œκ·Έ ν˜•νƒœμ†Œ 뢄석 슀페이슀")
    with gr.Row():
        blog_url_input = gr.Textbox(label="넀이버 λΈ”λ‘œκ·Έ 링크", placeholder="예: https://blog.naver.com/ssboost/222983068507", lines=1)
        scrape_button = gr.Button("μŠ€ν¬λž˜ν•‘ μ‹€ν–‰")
    with gr.Row():
        blog_content_box = gr.Textbox(label="λΈ”λ‘œκ·Έ λ‚΄μš© (μˆ˜μ • κ°€λŠ₯)", lines=10, placeholder="μŠ€ν¬λž˜ν•‘λœ λΈ”λ‘œκ·Έ λ‚΄μš©μ΄ 여기에 ν‘œμ‹œλ©λ‹ˆλ‹€.")
    with gr.Row():
        remove_freq_checkbox = gr.Checkbox(label="λΉˆλ„μˆ˜1 제거", value=False)
        direct_keyword_box = gr.Textbox(label="직접 ν‚€μ›Œλ“œ μž…λ ₯ (μ—”ν„° λ˜λŠ” ','둜 ꡬ뢄)", lines=2, placeholder="예: ν‚€μ›Œλ“œ1, ν‚€μ›Œλ“œ2\nν‚€μ›Œλ“œ3")
    with gr.Row():
        analyze_button = gr.Button("뢄석 μ‹€ν–‰")
    with gr.Row():
        result_df = gr.Dataframe(label="톡합 뢄석 κ²°κ³Ό (단어, λΉˆλ„μˆ˜, κ²€μƒ‰λŸ‰, λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜, μ§μ ‘μž…λ ₯)", interactive=True)
    with gr.Row():
        excel_file = gr.File(label="Excel λ‹€μš΄λ‘œλ“œ")
    
    # 이벀트 μ—°κ²°
    scrape_button.click(fn=fetch_blog_content, inputs=blog_url_input, outputs=blog_content_box)
    analyze_button.click(fn=combined_analysis, inputs=[blog_content_box, remove_freq_checkbox, direct_keyword_box],
                          outputs=[result_df, excel_file])

if __name__ == "__main__":
    debug_log("Gradio μ•± μ‹€ν–‰ μ‹œμž‘")
    demo.launch()
    debug_log("Gradio μ•± μ‹€ν–‰ μ’…λ£Œ")