Spaces:
Paused
Paused
| # Copyright 2025 Bytedance Ltd. and/or its affiliates. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import os | |
| import json | |
| import argparse | |
| from safetensors.torch import load_file | |
| import torch | |
| import torch.distributed as dist | |
| from data.data_utils import add_special_tokens | |
| from modeling.bagel import ( | |
| BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel | |
| ) | |
| from modeling.qwen2 import Qwen2Tokenizer | |
| from modeling.autoencoder import load_ae | |
| from PIL import Image | |
| from modeling.bagel.qwen2_navit import NaiveCache | |
| def move_generation_input_to_device(generation_input, device): | |
| # Utility to move all tensors in generation_input to device | |
| for k, v in generation_input.items(): | |
| if isinstance(v, torch.Tensor): | |
| generation_input[k] = v.to(device) | |
| return generation_input | |
| def setup_distributed(): | |
| dist.init_process_group(backend="nccl") | |
| torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) | |
| def generate_image(prompt, num_timesteps=50, cfg_scale=10.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=1.0, num_images=4, resolution=512, device=None): # 添加device参数 | |
| past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers) | |
| newlens = [0] * num_images | |
| new_rope = [0] * num_images | |
| generation_input, newlens, new_rope = gen_model.prepare_prompts( | |
| curr_kvlens=newlens, | |
| curr_rope=new_rope, | |
| prompts=[prompt] * num_images, | |
| tokenizer=tokenizer, | |
| new_token_ids=new_token_ids, | |
| ) | |
| generation_input = move_generation_input_to_device(generation_input, device) | |
| with torch.no_grad(): | |
| with torch.amp.autocast("cuda", enabled=True, dtype=torch.float16): | |
| past_key_values = gen_model.forward_cache_update_text(past_key_values, **generation_input) | |
| generation_input = gen_model.prepare_vae_latent( | |
| curr_kvlens=newlens, | |
| curr_rope=new_rope, | |
| image_sizes=[(resolution, resolution)] * num_images, | |
| new_token_ids=new_token_ids, | |
| ) | |
| generation_input = move_generation_input_to_device(generation_input, device) | |
| cfg_past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers) | |
| cfg_newlens = [0] * num_images | |
| cfg_new_rope = [0] * num_images | |
| generation_input_cfg = model.prepare_vae_latent_cfg( | |
| curr_kvlens=cfg_newlens, | |
| curr_rope=cfg_new_rope, | |
| image_sizes=[(resolution, resolution)] * num_images, | |
| ) | |
| generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device) | |
| with torch.no_grad(): | |
| with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16): | |
| unpacked_latent = gen_model.generate_image( | |
| past_key_values=past_key_values, | |
| num_timesteps=num_timesteps, | |
| cfg_text_scale=cfg_scale, | |
| cfg_interval=cfg_interval, | |
| cfg_renorm_min=cfg_renorm_min, | |
| timestep_shift=timestep_shift, | |
| cfg_text_past_key_values=cfg_past_key_values, | |
| cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"], | |
| cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"], | |
| cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"], | |
| cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"], | |
| **generation_input, | |
| ) | |
| image_list = [] | |
| for latent in unpacked_latent: | |
| latent = latent.reshape(1, resolution//16, resolution//16, 2, 2, 16) | |
| latent = torch.einsum("nhwpqc->nchpwq", latent) | |
| latent = latent.reshape(1, 16, resolution//8, resolution//8) | |
| image = vae_model.decode(latent.to(device)) | |
| tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy() | |
| tmpimage = Image.fromarray(tmpimage) | |
| image_list.append(tmpimage) | |
| return image_list | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="Generate images using Bagel model.") | |
| parser.add_argument("--output_dir", type=str, required=True, help="Directory to save the generated images.") | |
| parser.add_argument("--metadata_file", type=str, required=True, help="JSONL file containing lines of metadata for each prompt.") | |
| parser.add_argument("--num_images", type=int, default=4) | |
| parser.add_argument("--batch_size", type=int, default=4) | |
| parser.add_argument("--cfg_scale", type=float, default=4) | |
| parser.add_argument("--resolution", type=int, default=1024) | |
| parser.add_argument("--max_latent_size", type=int, default=64) | |
| parser.add_argument('--model-path', type=str, default='hf/BAGEL-7B-MoT/') | |
| args = parser.parse_args() | |
| seed = 42 | |
| if seed is not None: | |
| import random | |
| import numpy as np | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = False | |
| setup_distributed() | |
| rank = dist.get_rank() | |
| world_size = dist.get_world_size() | |
| device = f"cuda:{rank}" | |
| output_dir = args.output_dir | |
| os.makedirs(output_dir, exist_ok=True) | |
| if rank == 0: | |
| print(f"Output images are saved in {output_dir}") | |
| llm_config = Qwen2Config.from_json_file(os.path.join(args.model_path, "llm_config.json")) | |
| llm_config.qk_norm = True | |
| llm_config.tie_word_embeddings = False | |
| llm_config.layer_module = "Qwen2MoTDecoderLayer" | |
| vit_config = SiglipVisionConfig.from_json_file(os.path.join(args.model_path, "vit_config.json")) | |
| vit_config.rope = False | |
| vit_config.num_hidden_layers = vit_config.num_hidden_layers - 1 | |
| vae_model, vae_config = load_ae(local_path=os.path.join(args.model_path, "ae.safetensors")) | |
| config = BagelConfig( | |
| visual_gen=True, | |
| visual_und=True, | |
| llm_config=llm_config, | |
| vit_config=vit_config, | |
| vae_config=vae_config, | |
| vit_max_num_patch_per_side=70, | |
| connector_act='gelu_pytorch_tanh', | |
| latent_patch_size=2, | |
| max_latent_size=args.max_latent_size, | |
| ) | |
| language_model = Qwen2ForCausalLM(llm_config) | |
| vit_model = SiglipVisionModel(vit_config) | |
| model = Bagel(language_model, vit_model, config) | |
| model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config) | |
| tokenizer = Qwen2Tokenizer.from_pretrained(args.model_path) | |
| tokenizer, new_token_ids, _ = add_special_tokens(tokenizer) | |
| model_state_dict_path = os.path.join(args.model_path, "ema.safetensors") | |
| model_state_dict = load_file(model_state_dict_path, device="cpu") | |
| msg = model.load_state_dict(model_state_dict, strict=False) | |
| if rank == 0: | |
| print(msg) | |
| del model_state_dict | |
| model = model.to(device).eval() | |
| vae_model = vae_model.to(device).eval() | |
| gen_model = model | |
| cfg_scale = args.cfg_scale | |
| cfg_interval = [0, 1.0] | |
| timestep_shift = 3.0 | |
| num_timesteps = 50 | |
| cfg_renorm_min = 0.0 | |
| with open(args.metadata_file, "r", encoding="utf-8") as fp: | |
| metadatas = [json.loads(line) for line in fp] | |
| total_metadatas = len(metadatas) | |
| prompts_per_gpu = (total_metadatas + world_size - 1) // world_size | |
| start = rank * prompts_per_gpu | |
| end = min(start + prompts_per_gpu, total_metadatas) | |
| print(f"GPU {rank}: Processing {end - start} prompts (indices {start} to {end - 1})") | |
| for idx in range(start, end): | |
| metadata = metadatas[idx] | |
| outpath = os.path.join(output_dir, f"{idx:0>5}") | |
| os.makedirs(outpath, exist_ok=True) | |
| prompt = metadata['prompt'] | |
| print(f"GPU {rank} processing prompt {idx - start + 1}/{end - start}: '{prompt}'") | |
| sample_path = os.path.join(outpath, "samples") | |
| os.makedirs(sample_path, exist_ok=True) | |
| flag = True | |
| for idx in range(args.num_images): | |
| if not os.path.exists(os.path.join(sample_path, f"{idx:05}.png")): | |
| flag = False | |
| break | |
| if flag: | |
| print(f"GPU {rank} skipping generation for prompt: {prompt}") | |
| continue | |
| with open(os.path.join(outpath, "metadata.jsonl"), "w", encoding="utf-8") as fp: | |
| json.dump(metadata, fp) | |
| image_list = [] | |
| for i in range(args.num_images // args.batch_size): | |
| tmp_image_list = generate_image( | |
| prompt=prompt, | |
| cfg_scale=cfg_scale, | |
| cfg_interval=cfg_interval, | |
| cfg_renorm_min=cfg_renorm_min, | |
| timestep_shift=timestep_shift, | |
| num_timesteps=num_timesteps, | |
| num_images=args.batch_size, | |
| resolution=args.resolution, | |
| device=device, | |
| ) | |
| image_list.extend(tmp_image_list) | |
| sample_count = 0 | |
| for sample in image_list: | |
| sample = sample.crop(sample.getbbox()) | |
| sample.save(os.path.join(sample_path, f"{sample_count:05}.png")) | |
| sample_count += 1 | |
| print(f"GPU {rank} has completed all tasks") | |
| dist.barrier() |