Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,508 +1,508 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import numpy as np
|
| 4 |
-
import os
|
| 5 |
-
import torch
|
| 6 |
-
import random
|
| 7 |
-
import subprocess
|
| 8 |
-
subprocess.run(
|
| 9 |
-
"pip install flash-attn --no-build-isolation",
|
| 10 |
-
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 11 |
-
shell=True,
|
| 12 |
-
)
|
| 13 |
-
|
| 14 |
-
from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
|
| 15 |
-
from PIL import Image
|
| 16 |
-
|
| 17 |
-
from data.data_utils import add_special_tokens, pil_img2rgb
|
| 18 |
-
from data.transforms import ImageTransform
|
| 19 |
-
from inferencer import InterleaveInferencer
|
| 20 |
-
from modeling.autoencoder import load_ae
|
| 21 |
-
from modeling.bagel.qwen2_navit import NaiveCache
|
| 22 |
-
from modeling.bagel import (
|
| 23 |
-
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
|
| 24 |
-
SiglipVisionConfig, SiglipVisionModel
|
| 25 |
-
)
|
| 26 |
-
from modeling.qwen2 import Qwen2Tokenizer
|
| 27 |
-
|
| 28 |
-
from huggingface_hub import snapshot_download
|
| 29 |
-
|
| 30 |
-
save_dir = "./model"
|
| 31 |
-
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
|
| 32 |
-
cache_dir = save_dir + "/cache"
|
| 33 |
-
|
| 34 |
-
snapshot_download(cache_dir=cache_dir,
|
| 35 |
-
local_dir=save_dir,
|
| 36 |
-
repo_id=repo_id,
|
| 37 |
-
local_dir_use_symlinks=False,
|
| 38 |
-
resume_download=True,
|
| 39 |
-
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
# Model Initialization
|
| 43 |
-
model_path = "./model" #Download from https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT
|
| 44 |
-
|
| 45 |
-
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
|
| 46 |
-
llm_config.qk_norm = True
|
| 47 |
-
llm_config.tie_word_embeddings = False
|
| 48 |
-
llm_config.layer_module = "Qwen2MoTDecoderLayer"
|
| 49 |
-
|
| 50 |
-
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
|
| 51 |
-
vit_config.rope = False
|
| 52 |
-
vit_config.num_hidden_layers -= 1
|
| 53 |
-
|
| 54 |
-
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
|
| 55 |
-
|
| 56 |
-
config = BagelConfig(
|
| 57 |
-
visual_gen=True,
|
| 58 |
-
visual_und=True,
|
| 59 |
-
llm_config=llm_config,
|
| 60 |
-
vit_config=vit_config,
|
| 61 |
-
vae_config=vae_config,
|
| 62 |
-
vit_max_num_patch_per_side=70,
|
| 63 |
-
connector_act='gelu_pytorch_tanh',
|
| 64 |
-
latent_patch_size=2,
|
| 65 |
-
max_latent_size=64,
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
with init_empty_weights():
|
| 69 |
-
language_model = Qwen2ForCausalLM(llm_config)
|
| 70 |
-
vit_model = SiglipVisionModel(vit_config)
|
| 71 |
-
model = Bagel(language_model, vit_model, config)
|
| 72 |
-
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
|
| 73 |
-
|
| 74 |
-
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
|
| 75 |
-
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
|
| 76 |
-
|
| 77 |
-
vae_transform = ImageTransform(1024, 512, 16)
|
| 78 |
-
vit_transform = ImageTransform(980, 224, 14)
|
| 79 |
-
|
| 80 |
-
# Model Loading and Multi GPU Infernece Preparing
|
| 81 |
-
device_map = infer_auto_device_map(
|
| 82 |
-
model,
|
| 83 |
-
max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
|
| 84 |
-
no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
same_device_modules = [
|
| 88 |
-
'language_model.model.embed_tokens',
|
| 89 |
-
'time_embedder',
|
| 90 |
-
'latent_pos_embed',
|
| 91 |
-
'vae2llm',
|
| 92 |
-
'llm2vae',
|
| 93 |
-
'connector',
|
| 94 |
-
'vit_pos_embed'
|
| 95 |
-
]
|
| 96 |
-
|
| 97 |
-
if torch.cuda.device_count() == 1:
|
| 98 |
-
first_device = device_map.get(same_device_modules[0], "cuda:0")
|
| 99 |
-
for k in same_device_modules:
|
| 100 |
-
if k in device_map:
|
| 101 |
-
device_map[k] = first_device
|
| 102 |
-
else:
|
| 103 |
-
device_map[k] = "cuda:0"
|
| 104 |
-
else:
|
| 105 |
-
first_device = device_map.get(same_device_modules[0])
|
| 106 |
-
for k in same_device_modules:
|
| 107 |
-
if k in device_map:
|
| 108 |
-
device_map[k] = first_device
|
| 109 |
-
|
| 110 |
-
model = load_checkpoint_and_dispatch(
|
| 111 |
-
model,
|
| 112 |
-
checkpoint=os.path.join(model_path, "ema.safetensors"),
|
| 113 |
-
device_map=device_map,
|
| 114 |
-
offload_buffers=True,
|
| 115 |
-
dtype=torch.bfloat16,
|
| 116 |
-
force_hooks=True,
|
| 117 |
-
).eval()
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# Inferencer Preparing
|
| 121 |
-
inferencer = InterleaveInferencer(
|
| 122 |
-
model=model,
|
| 123 |
-
vae_model=vae_model,
|
| 124 |
-
tokenizer=tokenizer,
|
| 125 |
-
vae_transform=vae_transform,
|
| 126 |
-
vit_transform=vit_transform,
|
| 127 |
-
new_token_ids=new_token_ids,
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
def set_seed(seed):
|
| 131 |
-
"""Set random seeds for reproducibility"""
|
| 132 |
-
if seed > 0:
|
| 133 |
-
random.seed(seed)
|
| 134 |
-
np.random.seed(seed)
|
| 135 |
-
torch.manual_seed(seed)
|
| 136 |
-
if torch.cuda.is_available():
|
| 137 |
-
torch.cuda.manual_seed(seed)
|
| 138 |
-
torch.cuda.manual_seed_all(seed)
|
| 139 |
-
torch.backends.cudnn.deterministic = True
|
| 140 |
-
torch.backends.cudnn.benchmark = False
|
| 141 |
-
return seed
|
| 142 |
-
|
| 143 |
-
# Text to Image function with thinking option and hyperparameters
|
| 144 |
-
@spaces.GPU(duration=90)
|
| 145 |
-
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
|
| 146 |
-
timestep_shift=3.0, num_timesteps=50,
|
| 147 |
-
cfg_renorm_min=1.0, cfg_renorm_type="global",
|
| 148 |
-
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
|
| 149 |
-
seed=0, image_ratio="1:1"):
|
| 150 |
-
# Set seed for reproducibility
|
| 151 |
-
set_seed(seed)
|
| 152 |
-
|
| 153 |
-
if image_ratio == "1:1":
|
| 154 |
-
image_shapes = (1024, 1024)
|
| 155 |
-
elif image_ratio == "4:3":
|
| 156 |
-
image_shapes = (768, 1024)
|
| 157 |
-
elif image_ratio == "3:4":
|
| 158 |
-
image_shapes = (1024, 768)
|
| 159 |
-
elif image_ratio == "16:9":
|
| 160 |
-
image_shapes = (576, 1024)
|
| 161 |
-
elif image_ratio == "9:16":
|
| 162 |
-
image_shapes = (1024, 576)
|
| 163 |
-
|
| 164 |
-
# Set hyperparameters
|
| 165 |
-
inference_hyper = dict(
|
| 166 |
-
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
| 167 |
-
do_sample=do_sample if show_thinking else False,
|
| 168 |
-
|
| 169 |
-
cfg_text_scale=cfg_text_scale,
|
| 170 |
-
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
| 171 |
-
timestep_shift=timestep_shift,
|
| 172 |
-
num_timesteps=num_timesteps,
|
| 173 |
-
cfg_renorm_min=cfg_renorm_min,
|
| 174 |
-
cfg_renorm_type=cfg_renorm_type,
|
| 175 |
-
image_shapes=image_shapes,
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
result = {}
|
| 179 |
-
|
| 180 |
-
# Call inferencer with or without think parameter based on user choice
|
| 181 |
-
for i in inferencer(text=prompt, think=show_thinking, **inference_hyper):
|
| 182 |
-
if type(i) == str:
|
| 183 |
-
result["text"] += i
|
| 184 |
-
elif type(i) == Image.Image:
|
| 185 |
-
result["image"] = i
|
| 186 |
-
|
| 187 |
-
yield result["image"], result.get("text", None)
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
# Image Understanding function with thinking option and hyperparameters
|
| 191 |
-
@spaces.GPU(duration=90)
|
| 192 |
-
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
|
| 193 |
-
do_sample=False, text_temperature=0.3, max_new_tokens=512):
|
| 194 |
-
if image is None:
|
| 195 |
-
return "Please upload an image."
|
| 196 |
-
|
| 197 |
-
if isinstance(image, np.ndarray):
|
| 198 |
-
image = Image.fromarray(image)
|
| 199 |
-
|
| 200 |
-
image = pil_img2rgb(image)
|
| 201 |
-
|
| 202 |
-
# Set hyperparameters
|
| 203 |
-
inference_hyper = dict(
|
| 204 |
-
do_sample=do_sample,
|
| 205 |
-
|
| 206 |
-
max_think_token_n=max_new_tokens, # Set max_length
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
result = {}
|
| 210 |
-
# Use show_thinking parameter to control thinking process
|
| 211 |
-
for i in inferencer(image=image, text=prompt, think=show_thinking,
|
| 212 |
-
understanding_output=True, **inference_hyper):
|
| 213 |
-
if type(i) == str:
|
| 214 |
-
result["text"] += i
|
| 215 |
-
elif type(i) == Image.Image:
|
| 216 |
-
result["image"] = i
|
| 217 |
-
yield result["text"]
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
# Image Editing function with thinking option and hyperparameters
|
| 221 |
-
@spaces.GPU(duration=90)
|
| 222 |
-
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
|
| 223 |
-
cfg_img_scale=2.0, cfg_interval=0.0,
|
| 224 |
-
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
|
| 225 |
-
cfg_renorm_type="text_channel", max_think_token_n=1024,
|
| 226 |
-
do_sample=False, text_temperature=0.3, seed=0):
|
| 227 |
-
# Set seed for reproducibility
|
| 228 |
-
set_seed(seed)
|
| 229 |
-
|
| 230 |
-
if image is None:
|
| 231 |
-
return "Please upload an image.", ""
|
| 232 |
-
|
| 233 |
-
if isinstance(image, np.ndarray):
|
| 234 |
-
image = Image.fromarray(image)
|
| 235 |
-
|
| 236 |
-
image = pil_img2rgb(image)
|
| 237 |
-
|
| 238 |
-
# Set hyperparameters
|
| 239 |
-
inference_hyper = dict(
|
| 240 |
-
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
| 241 |
-
do_sample=do_sample if show_thinking else False,
|
| 242 |
-
|
| 243 |
-
cfg_text_scale=cfg_text_scale,
|
| 244 |
-
cfg_img_scale=cfg_img_scale,
|
| 245 |
-
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
| 246 |
-
timestep_shift=timestep_shift,
|
| 247 |
-
num_timesteps=num_timesteps,
|
| 248 |
-
cfg_renorm_min=cfg_renorm_min,
|
| 249 |
-
cfg_renorm_type=cfg_renorm_type,
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
# Include thinking parameter based on user choice
|
| 253 |
-
result = {}
|
| 254 |
-
for i in inferencer(image=image, text=prompt, think=show_thinking, **inference_hyper):
|
| 255 |
-
if type(i) == str:
|
| 256 |
-
result["text"] += i
|
| 257 |
-
elif type(i) == Image.Image:
|
| 258 |
-
result["image"] = i
|
| 259 |
-
|
| 260 |
-
yield result["image"], result.get("text", "")
|
| 261 |
-
|
| 262 |
-
# Helper function to load example images
|
| 263 |
-
def load_example_image(image_path):
|
| 264 |
-
try:
|
| 265 |
-
return Image.open(image_path)
|
| 266 |
-
except Exception as e:
|
| 267 |
-
print(f"Error loading example image: {e}")
|
| 268 |
-
return None
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
# Gradio UI
|
| 272 |
-
with gr.Blocks() as demo:
|
| 273 |
-
gr.Markdown("""
|
| 274 |
-
<div>
|
| 275 |
-
<img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
|
| 276 |
-
</div>
|
| 277 |
-
""")
|
| 278 |
-
|
| 279 |
-
with gr.Tab("📝 Text to Image"):
|
| 280 |
-
txt_input = gr.Textbox(
|
| 281 |
-
label="Prompt",
|
| 282 |
-
value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere."
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
with gr.Row():
|
| 286 |
-
show_thinking = gr.Checkbox(label="Thinking", value=False)
|
| 287 |
-
|
| 288 |
-
# Add hyperparameter controls in an accordion
|
| 289 |
-
with gr.Accordion("Inference Hyperparameters", open=False):
|
| 290 |
-
# 参数一排两个布局
|
| 291 |
-
with gr.Group():
|
| 292 |
-
with gr.Row():
|
| 293 |
-
seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1,
|
| 294 |
-
label="Seed", info="0 for random seed, positive for reproducible results")
|
| 295 |
-
image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"],
|
| 296 |
-
value="1:1", label="Image Ratio",
|
| 297 |
-
info="The longer size is fixed to 1024")
|
| 298 |
-
|
| 299 |
-
with gr.Row():
|
| 300 |
-
cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
|
| 301 |
-
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)")
|
| 302 |
-
cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1,
|
| 303 |
-
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
|
| 304 |
-
|
| 305 |
-
with gr.Row():
|
| 306 |
-
cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
|
| 307 |
-
value="global", label="CFG Renorm Type",
|
| 308 |
-
info="If the genrated image is blurry, use 'global'")
|
| 309 |
-
cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
| 310 |
-
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
|
| 311 |
-
|
| 312 |
-
with gr.Row():
|
| 313 |
-
num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
|
| 314 |
-
label="Timesteps", info="Total denoising steps")
|
| 315 |
-
timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True,
|
| 316 |
-
label="Timestep Shift", info="Higher values for layout, lower for details")
|
| 317 |
-
|
| 318 |
-
# Thinking parameters in a single row
|
| 319 |
-
thinking_params = gr.Group(visible=False)
|
| 320 |
-
with thinking_params:
|
| 321 |
-
with gr.Row():
|
| 322 |
-
do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
| 323 |
-
max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
|
| 324 |
-
label="Max Think Tokens", info="Maximum number of tokens for thinking")
|
| 325 |
-
text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
|
| 326 |
-
label="Temperature", info="Controls randomness in text generation")
|
| 327 |
-
|
| 328 |
-
thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
| 329 |
-
img_output = gr.Image(label="Generated Image")
|
| 330 |
-
gen_btn = gr.Button("Generate")
|
| 331 |
-
|
| 332 |
-
# Dynamically show/hide thinking process box and parameters
|
| 333 |
-
def update_thinking_visibility(show):
|
| 334 |
-
return gr.update(visible=show), gr.update(visible=show)
|
| 335 |
-
|
| 336 |
-
show_thinking.change(
|
| 337 |
-
fn=update_thinking_visibility,
|
| 338 |
-
inputs=[show_thinking],
|
| 339 |
-
outputs=[thinking_output, thinking_params]
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
-
gen_btn.click(
|
| 343 |
-
fn=text_to_image,
|
| 344 |
-
inputs=[
|
| 345 |
-
txt_input, show_thinking, cfg_text_scale,
|
| 346 |
-
cfg_interval, timestep_shift,
|
| 347 |
-
num_timesteps, cfg_renorm_min, cfg_renorm_type,
|
| 348 |
-
max_think_token_n, do_sample, text_temperature, seed, image_ratio
|
| 349 |
-
],
|
| 350 |
-
outputs=[img_output, thinking_output]
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
-
with gr.Tab("🖌️ Image Edit"):
|
| 354 |
-
with gr.Row():
|
| 355 |
-
with gr.Column(scale=1):
|
| 356 |
-
edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg'))
|
| 357 |
-
edit_prompt = gr.Textbox(
|
| 358 |
-
label="Prompt",
|
| 359 |
-
value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes."
|
| 360 |
-
)
|
| 361 |
-
|
| 362 |
-
with gr.Column(scale=1):
|
| 363 |
-
edit_image_output = gr.Image(label="Result")
|
| 364 |
-
edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
| 365 |
-
|
| 366 |
-
with gr.Row():
|
| 367 |
-
edit_show_thinking = gr.Checkbox(label="Thinking", value=False)
|
| 368 |
-
|
| 369 |
-
# Add hyperparameter controls in an accordion
|
| 370 |
-
with gr.Accordion("Inference Hyperparameters", open=False):
|
| 371 |
-
with gr.Group():
|
| 372 |
-
with gr.Row():
|
| 373 |
-
edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True,
|
| 374 |
-
label="Seed", info="0 for random seed, positive for reproducible results")
|
| 375 |
-
edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
|
| 376 |
-
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt")
|
| 377 |
-
|
| 378 |
-
with gr.Row():
|
| 379 |
-
edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True,
|
| 380 |
-
label="CFG Image Scale", info="Controls how much the model preserves input image details")
|
| 381 |
-
edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
| 382 |
-
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
|
| 383 |
-
|
| 384 |
-
with gr.Row():
|
| 385 |
-
edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
|
| 386 |
-
value="text_channel", label="CFG Renorm Type",
|
| 387 |
-
info="If the genrated image is blurry, use 'global")
|
| 388 |
-
edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
| 389 |
-
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
|
| 390 |
-
|
| 391 |
-
with gr.Row():
|
| 392 |
-
edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
|
| 393 |
-
label="Timesteps", info="Total denoising steps")
|
| 394 |
-
edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True,
|
| 395 |
-
label="Timestep Shift", info="Higher values for layout, lower for details")
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
# Thinking parameters in a single row
|
| 399 |
-
edit_thinking_params = gr.Group(visible=False)
|
| 400 |
-
with edit_thinking_params:
|
| 401 |
-
with gr.Row():
|
| 402 |
-
edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
| 403 |
-
edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
|
| 404 |
-
label="Max Think Tokens", info="Maximum number of tokens for thinking")
|
| 405 |
-
edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
|
| 406 |
-
label="Temperature", info="Controls randomness in text generation")
|
| 407 |
-
|
| 408 |
-
edit_btn = gr.Button("Submit")
|
| 409 |
-
|
| 410 |
-
# Dynamically show/hide thinking process box for editing
|
| 411 |
-
def update_edit_thinking_visibility(show):
|
| 412 |
-
return gr.update(visible=show), gr.update(visible=show)
|
| 413 |
-
|
| 414 |
-
edit_show_thinking.change(
|
| 415 |
-
fn=update_edit_thinking_visibility,
|
| 416 |
-
inputs=[edit_show_thinking],
|
| 417 |
-
outputs=[edit_thinking_output, edit_thinking_params]
|
| 418 |
-
)
|
| 419 |
-
|
| 420 |
-
edit_btn.click(
|
| 421 |
-
fn=edit_image,
|
| 422 |
-
inputs=[
|
| 423 |
-
edit_image_input, edit_prompt, edit_show_thinking,
|
| 424 |
-
edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
|
| 425 |
-
edit_timestep_shift, edit_num_timesteps,
|
| 426 |
-
edit_cfg_renorm_min, edit_cfg_renorm_type,
|
| 427 |
-
edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed
|
| 428 |
-
],
|
| 429 |
-
outputs=[edit_image_output, edit_thinking_output]
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
with gr.Tab("🖼️ Image Understanding"):
|
| 433 |
-
with gr.Row():
|
| 434 |
-
with gr.Column(scale=1):
|
| 435 |
-
img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg'))
|
| 436 |
-
understand_prompt = gr.Textbox(
|
| 437 |
-
label="Prompt",
|
| 438 |
-
value="Can someone explain what's funny about this meme??"
|
| 439 |
-
)
|
| 440 |
-
|
| 441 |
-
with gr.Column(scale=1):
|
| 442 |
-
txt_output = gr.Textbox(label="Result", lines=20)
|
| 443 |
-
|
| 444 |
-
with gr.Row():
|
| 445 |
-
understand_show_thinking = gr.Checkbox(label="Thinking", value=False)
|
| 446 |
-
|
| 447 |
-
# Add hyperparameter controls in an accordion
|
| 448 |
-
with gr.Accordion("Inference Hyperparameters", open=False):
|
| 449 |
-
with gr.Row():
|
| 450 |
-
understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
| 451 |
-
understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True,
|
| 452 |
-
label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)")
|
| 453 |
-
understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True,
|
| 454 |
-
label="Max New Tokens", info="Maximum length of generated text, including potential thinking")
|
| 455 |
-
|
| 456 |
-
img_understand_btn = gr.Button("Submit")
|
| 457 |
-
|
| 458 |
-
img_understand_btn.click(
|
| 459 |
-
fn=image_understanding,
|
| 460 |
-
inputs=[
|
| 461 |
-
img_input, understand_prompt, understand_show_thinking,
|
| 462 |
-
understand_do_sample, understand_text_temperature, understand_max_new_tokens
|
| 463 |
-
],
|
| 464 |
-
outputs=txt_output
|
| 465 |
-
)
|
| 466 |
-
|
| 467 |
-
gr.Markdown("""
|
| 468 |
-
<div style="display: flex; justify-content: flex-start; flex-wrap: wrap; gap: 10px;">
|
| 469 |
-
<a href="https://bagel-ai.org/">
|
| 470 |
-
<img
|
| 471 |
-
src="https://img.shields.io/badge/BAGEL-Website-0A66C2?logo=safari&logoColor=white"
|
| 472 |
-
alt="BAGEL Website"
|
| 473 |
-
/>
|
| 474 |
-
</a>
|
| 475 |
-
<a href="https://arxiv.org/abs/2505.14683">
|
| 476 |
-
<img
|
| 477 |
-
src="https://img.shields.io/badge/BAGEL-Paper-red?logo=arxiv&logoColor=red"
|
| 478 |
-
alt="BAGEL Paper on arXiv"
|
| 479 |
-
/>
|
| 480 |
-
</a>
|
| 481 |
-
<a href="https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT">
|
| 482 |
-
<img
|
| 483 |
-
src="https://img.shields.io/badge/BAGEL-Hugging%20Face-orange?logo=huggingface&logoColor=yellow"
|
| 484 |
-
alt="BAGEL on Hugging Face"
|
| 485 |
-
/>
|
| 486 |
-
</a>
|
| 487 |
-
<a href="https://demo.bagel-ai.org/">
|
| 488 |
-
<img
|
| 489 |
-
src="https://img.shields.io/badge/BAGEL-Demo-blue?logo=googleplay&logoColor=blue"
|
| 490 |
-
alt="BAGEL Demo"
|
| 491 |
-
/>
|
| 492 |
-
</a>
|
| 493 |
-
<a href="https://discord.gg/Z836xxzy">
|
| 494 |
-
<img
|
| 495 |
-
src="https://img.shields.io/badge/BAGEL-Discord-5865F2?logo=discord&logoColor=purple"
|
| 496 |
-
alt="BAGEL Discord"
|
| 497 |
-
/>
|
| 498 |
-
</a>
|
| 499 |
-
<a href="mailto:[email protected]">
|
| 500 |
-
<img
|
| 501 |
-
src="https://img.shields.io/badge/BAGEL-Email-D14836?logo=gmail&logoColor=red"
|
| 502 |
-
alt="BAGEL Email"
|
| 503 |
-
/>
|
| 504 |
-
</a>
|
| 505 |
-
</div>
|
| 506 |
-
""")
|
| 507 |
-
|
| 508 |
demo.launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import random
|
| 7 |
+
import subprocess
|
| 8 |
+
subprocess.run(
|
| 9 |
+
"pip install flash-attn --no-build-isolation",
|
| 10 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 11 |
+
shell=True,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
|
| 15 |
+
from PIL import Image
|
| 16 |
+
|
| 17 |
+
from data.data_utils import add_special_tokens, pil_img2rgb
|
| 18 |
+
from data.transforms import ImageTransform
|
| 19 |
+
from inferencer import InterleaveInferencer
|
| 20 |
+
from modeling.autoencoder import load_ae
|
| 21 |
+
from modeling.bagel.qwen2_navit import NaiveCache
|
| 22 |
+
from modeling.bagel import (
|
| 23 |
+
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
|
| 24 |
+
SiglipVisionConfig, SiglipVisionModel
|
| 25 |
+
)
|
| 26 |
+
from modeling.qwen2 import Qwen2Tokenizer
|
| 27 |
+
|
| 28 |
+
from huggingface_hub import snapshot_download
|
| 29 |
+
|
| 30 |
+
save_dir = "./model"
|
| 31 |
+
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
|
| 32 |
+
cache_dir = save_dir + "/cache"
|
| 33 |
+
|
| 34 |
+
snapshot_download(cache_dir=cache_dir,
|
| 35 |
+
local_dir=save_dir,
|
| 36 |
+
repo_id=repo_id,
|
| 37 |
+
local_dir_use_symlinks=False,
|
| 38 |
+
resume_download=True,
|
| 39 |
+
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Model Initialization
|
| 43 |
+
model_path = "./model" #Download from https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT
|
| 44 |
+
|
| 45 |
+
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
|
| 46 |
+
llm_config.qk_norm = True
|
| 47 |
+
llm_config.tie_word_embeddings = False
|
| 48 |
+
llm_config.layer_module = "Qwen2MoTDecoderLayer"
|
| 49 |
+
|
| 50 |
+
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
|
| 51 |
+
vit_config.rope = False
|
| 52 |
+
vit_config.num_hidden_layers -= 1
|
| 53 |
+
|
| 54 |
+
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
|
| 55 |
+
|
| 56 |
+
config = BagelConfig(
|
| 57 |
+
visual_gen=True,
|
| 58 |
+
visual_und=True,
|
| 59 |
+
llm_config=llm_config,
|
| 60 |
+
vit_config=vit_config,
|
| 61 |
+
vae_config=vae_config,
|
| 62 |
+
vit_max_num_patch_per_side=70,
|
| 63 |
+
connector_act='gelu_pytorch_tanh',
|
| 64 |
+
latent_patch_size=2,
|
| 65 |
+
max_latent_size=64,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
with init_empty_weights():
|
| 69 |
+
language_model = Qwen2ForCausalLM(llm_config)
|
| 70 |
+
vit_model = SiglipVisionModel(vit_config)
|
| 71 |
+
model = Bagel(language_model, vit_model, config)
|
| 72 |
+
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
|
| 73 |
+
|
| 74 |
+
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
|
| 75 |
+
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
|
| 76 |
+
|
| 77 |
+
vae_transform = ImageTransform(1024, 512, 16)
|
| 78 |
+
vit_transform = ImageTransform(980, 224, 14)
|
| 79 |
+
|
| 80 |
+
# Model Loading and Multi GPU Infernece Preparing
|
| 81 |
+
device_map = infer_auto_device_map(
|
| 82 |
+
model,
|
| 83 |
+
max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
|
| 84 |
+
no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
same_device_modules = [
|
| 88 |
+
'language_model.model.embed_tokens',
|
| 89 |
+
'time_embedder',
|
| 90 |
+
'latent_pos_embed',
|
| 91 |
+
'vae2llm',
|
| 92 |
+
'llm2vae',
|
| 93 |
+
'connector',
|
| 94 |
+
'vit_pos_embed'
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
if torch.cuda.device_count() == 1:
|
| 98 |
+
first_device = device_map.get(same_device_modules[0], "cuda:0")
|
| 99 |
+
for k in same_device_modules:
|
| 100 |
+
if k in device_map:
|
| 101 |
+
device_map[k] = first_device
|
| 102 |
+
else:
|
| 103 |
+
device_map[k] = "cuda:0"
|
| 104 |
+
else:
|
| 105 |
+
first_device = device_map.get(same_device_modules[0])
|
| 106 |
+
for k in same_device_modules:
|
| 107 |
+
if k in device_map:
|
| 108 |
+
device_map[k] = first_device
|
| 109 |
+
|
| 110 |
+
model = load_checkpoint_and_dispatch(
|
| 111 |
+
model,
|
| 112 |
+
checkpoint=os.path.join(model_path, "ema.safetensors"),
|
| 113 |
+
device_map=device_map,
|
| 114 |
+
offload_buffers=True,
|
| 115 |
+
dtype=torch.bfloat16,
|
| 116 |
+
force_hooks=True,
|
| 117 |
+
).eval()
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# Inferencer Preparing
|
| 121 |
+
inferencer = InterleaveInferencer(
|
| 122 |
+
model=model,
|
| 123 |
+
vae_model=vae_model,
|
| 124 |
+
tokenizer=tokenizer,
|
| 125 |
+
vae_transform=vae_transform,
|
| 126 |
+
vit_transform=vit_transform,
|
| 127 |
+
new_token_ids=new_token_ids,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
def set_seed(seed):
|
| 131 |
+
"""Set random seeds for reproducibility"""
|
| 132 |
+
if seed > 0:
|
| 133 |
+
random.seed(seed)
|
| 134 |
+
np.random.seed(seed)
|
| 135 |
+
torch.manual_seed(seed)
|
| 136 |
+
if torch.cuda.is_available():
|
| 137 |
+
torch.cuda.manual_seed(seed)
|
| 138 |
+
torch.cuda.manual_seed_all(seed)
|
| 139 |
+
torch.backends.cudnn.deterministic = True
|
| 140 |
+
torch.backends.cudnn.benchmark = False
|
| 141 |
+
return seed
|
| 142 |
+
|
| 143 |
+
# Text to Image function with thinking option and hyperparameters
|
| 144 |
+
@spaces.GPU(duration=90)
|
| 145 |
+
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
|
| 146 |
+
timestep_shift=3.0, num_timesteps=50,
|
| 147 |
+
cfg_renorm_min=1.0, cfg_renorm_type="global",
|
| 148 |
+
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
|
| 149 |
+
seed=0, image_ratio="1:1"):
|
| 150 |
+
# Set seed for reproducibility
|
| 151 |
+
set_seed(seed)
|
| 152 |
+
|
| 153 |
+
if image_ratio == "1:1":
|
| 154 |
+
image_shapes = (1024, 1024)
|
| 155 |
+
elif image_ratio == "4:3":
|
| 156 |
+
image_shapes = (768, 1024)
|
| 157 |
+
elif image_ratio == "3:4":
|
| 158 |
+
image_shapes = (1024, 768)
|
| 159 |
+
elif image_ratio == "16:9":
|
| 160 |
+
image_shapes = (576, 1024)
|
| 161 |
+
elif image_ratio == "9:16":
|
| 162 |
+
image_shapes = (1024, 576)
|
| 163 |
+
|
| 164 |
+
# Set hyperparameters
|
| 165 |
+
inference_hyper = dict(
|
| 166 |
+
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
| 167 |
+
do_sample=do_sample if show_thinking else False,
|
| 168 |
+
temperature=text_temperature if show_thinking else 0.3,
|
| 169 |
+
cfg_text_scale=cfg_text_scale,
|
| 170 |
+
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
| 171 |
+
timestep_shift=timestep_shift,
|
| 172 |
+
num_timesteps=num_timesteps,
|
| 173 |
+
cfg_renorm_min=cfg_renorm_min,
|
| 174 |
+
cfg_renorm_type=cfg_renorm_type,
|
| 175 |
+
image_shapes=image_shapes,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
result = {}
|
| 179 |
+
|
| 180 |
+
# Call inferencer with or without think parameter based on user choice
|
| 181 |
+
for i in inferencer(text=prompt, think=show_thinking, **inference_hyper):
|
| 182 |
+
if type(i) == str:
|
| 183 |
+
result["text"] += i
|
| 184 |
+
elif type(i) == Image.Image:
|
| 185 |
+
result["image"] = i
|
| 186 |
+
|
| 187 |
+
yield result["image"], result.get("text", None)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
# Image Understanding function with thinking option and hyperparameters
|
| 191 |
+
@spaces.GPU(duration=90)
|
| 192 |
+
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
|
| 193 |
+
do_sample=False, text_temperature=0.3, max_new_tokens=512):
|
| 194 |
+
if image is None:
|
| 195 |
+
return "Please upload an image."
|
| 196 |
+
|
| 197 |
+
if isinstance(image, np.ndarray):
|
| 198 |
+
image = Image.fromarray(image)
|
| 199 |
+
|
| 200 |
+
image = pil_img2rgb(image)
|
| 201 |
+
|
| 202 |
+
# Set hyperparameters
|
| 203 |
+
inference_hyper = dict(
|
| 204 |
+
do_sample=do_sample,
|
| 205 |
+
temperature=text_temperature,
|
| 206 |
+
max_think_token_n=max_new_tokens, # Set max_length
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
result = {}
|
| 210 |
+
# Use show_thinking parameter to control thinking process
|
| 211 |
+
for i in inferencer(image=image, text=prompt, think=show_thinking,
|
| 212 |
+
understanding_output=True, **inference_hyper):
|
| 213 |
+
if type(i) == str:
|
| 214 |
+
result["text"] += i
|
| 215 |
+
elif type(i) == Image.Image:
|
| 216 |
+
result["image"] = i
|
| 217 |
+
yield result["text"]
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
# Image Editing function with thinking option and hyperparameters
|
| 221 |
+
@spaces.GPU(duration=90)
|
| 222 |
+
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
|
| 223 |
+
cfg_img_scale=2.0, cfg_interval=0.0,
|
| 224 |
+
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
|
| 225 |
+
cfg_renorm_type="text_channel", max_think_token_n=1024,
|
| 226 |
+
do_sample=False, text_temperature=0.3, seed=0):
|
| 227 |
+
# Set seed for reproducibility
|
| 228 |
+
set_seed(seed)
|
| 229 |
+
|
| 230 |
+
if image is None:
|
| 231 |
+
return "Please upload an image.", ""
|
| 232 |
+
|
| 233 |
+
if isinstance(image, np.ndarray):
|
| 234 |
+
image = Image.fromarray(image)
|
| 235 |
+
|
| 236 |
+
image = pil_img2rgb(image)
|
| 237 |
+
|
| 238 |
+
# Set hyperparameters
|
| 239 |
+
inference_hyper = dict(
|
| 240 |
+
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
| 241 |
+
do_sample=do_sample if show_thinking else False,
|
| 242 |
+
temperature=text_temperature if show_thinking else 0.3,
|
| 243 |
+
cfg_text_scale=cfg_text_scale,
|
| 244 |
+
cfg_img_scale=cfg_img_scale,
|
| 245 |
+
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
| 246 |
+
timestep_shift=timestep_shift,
|
| 247 |
+
num_timesteps=num_timesteps,
|
| 248 |
+
cfg_renorm_min=cfg_renorm_min,
|
| 249 |
+
cfg_renorm_type=cfg_renorm_type,
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# Include thinking parameter based on user choice
|
| 253 |
+
result = {}
|
| 254 |
+
for i in inferencer(image=image, text=prompt, think=show_thinking, **inference_hyper):
|
| 255 |
+
if type(i) == str:
|
| 256 |
+
result["text"] += i
|
| 257 |
+
elif type(i) == Image.Image:
|
| 258 |
+
result["image"] = i
|
| 259 |
+
|
| 260 |
+
yield result["image"], result.get("text", "")
|
| 261 |
+
|
| 262 |
+
# Helper function to load example images
|
| 263 |
+
def load_example_image(image_path):
|
| 264 |
+
try:
|
| 265 |
+
return Image.open(image_path)
|
| 266 |
+
except Exception as e:
|
| 267 |
+
print(f"Error loading example image: {e}")
|
| 268 |
+
return None
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
# Gradio UI
|
| 272 |
+
with gr.Blocks() as demo:
|
| 273 |
+
gr.Markdown("""
|
| 274 |
+
<div>
|
| 275 |
+
<img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
|
| 276 |
+
</div>
|
| 277 |
+
""")
|
| 278 |
+
|
| 279 |
+
with gr.Tab("📝 Text to Image"):
|
| 280 |
+
txt_input = gr.Textbox(
|
| 281 |
+
label="Prompt",
|
| 282 |
+
value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere."
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
with gr.Row():
|
| 286 |
+
show_thinking = gr.Checkbox(label="Thinking", value=False)
|
| 287 |
+
|
| 288 |
+
# Add hyperparameter controls in an accordion
|
| 289 |
+
with gr.Accordion("Inference Hyperparameters", open=False):
|
| 290 |
+
# 参数一排两个布局
|
| 291 |
+
with gr.Group():
|
| 292 |
+
with gr.Row():
|
| 293 |
+
seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1,
|
| 294 |
+
label="Seed", info="0 for random seed, positive for reproducible results")
|
| 295 |
+
image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"],
|
| 296 |
+
value="1:1", label="Image Ratio",
|
| 297 |
+
info="The longer size is fixed to 1024")
|
| 298 |
+
|
| 299 |
+
with gr.Row():
|
| 300 |
+
cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
|
| 301 |
+
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)")
|
| 302 |
+
cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1,
|
| 303 |
+
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
|
| 304 |
+
|
| 305 |
+
with gr.Row():
|
| 306 |
+
cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
|
| 307 |
+
value="global", label="CFG Renorm Type",
|
| 308 |
+
info="If the genrated image is blurry, use 'global'")
|
| 309 |
+
cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
| 310 |
+
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
|
| 311 |
+
|
| 312 |
+
with gr.Row():
|
| 313 |
+
num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
|
| 314 |
+
label="Timesteps", info="Total denoising steps")
|
| 315 |
+
timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True,
|
| 316 |
+
label="Timestep Shift", info="Higher values for layout, lower for details")
|
| 317 |
+
|
| 318 |
+
# Thinking parameters in a single row
|
| 319 |
+
thinking_params = gr.Group(visible=False)
|
| 320 |
+
with thinking_params:
|
| 321 |
+
with gr.Row():
|
| 322 |
+
do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
| 323 |
+
max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
|
| 324 |
+
label="Max Think Tokens", info="Maximum number of tokens for thinking")
|
| 325 |
+
text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
|
| 326 |
+
label="Temperature", info="Controls randomness in text generation")
|
| 327 |
+
|
| 328 |
+
thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
| 329 |
+
img_output = gr.Image(label="Generated Image")
|
| 330 |
+
gen_btn = gr.Button("Generate")
|
| 331 |
+
|
| 332 |
+
# Dynamically show/hide thinking process box and parameters
|
| 333 |
+
def update_thinking_visibility(show):
|
| 334 |
+
return gr.update(visible=show), gr.update(visible=show)
|
| 335 |
+
|
| 336 |
+
show_thinking.change(
|
| 337 |
+
fn=update_thinking_visibility,
|
| 338 |
+
inputs=[show_thinking],
|
| 339 |
+
outputs=[thinking_output, thinking_params]
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
gen_btn.click(
|
| 343 |
+
fn=text_to_image,
|
| 344 |
+
inputs=[
|
| 345 |
+
txt_input, show_thinking, cfg_text_scale,
|
| 346 |
+
cfg_interval, timestep_shift,
|
| 347 |
+
num_timesteps, cfg_renorm_min, cfg_renorm_type,
|
| 348 |
+
max_think_token_n, do_sample, text_temperature, seed, image_ratio
|
| 349 |
+
],
|
| 350 |
+
outputs=[img_output, thinking_output]
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
with gr.Tab("🖌️ Image Edit"):
|
| 354 |
+
with gr.Row():
|
| 355 |
+
with gr.Column(scale=1):
|
| 356 |
+
edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg'))
|
| 357 |
+
edit_prompt = gr.Textbox(
|
| 358 |
+
label="Prompt",
|
| 359 |
+
value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes."
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
with gr.Column(scale=1):
|
| 363 |
+
edit_image_output = gr.Image(label="Result")
|
| 364 |
+
edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
| 365 |
+
|
| 366 |
+
with gr.Row():
|
| 367 |
+
edit_show_thinking = gr.Checkbox(label="Thinking", value=False)
|
| 368 |
+
|
| 369 |
+
# Add hyperparameter controls in an accordion
|
| 370 |
+
with gr.Accordion("Inference Hyperparameters", open=False):
|
| 371 |
+
with gr.Group():
|
| 372 |
+
with gr.Row():
|
| 373 |
+
edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True,
|
| 374 |
+
label="Seed", info="0 for random seed, positive for reproducible results")
|
| 375 |
+
edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
|
| 376 |
+
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt")
|
| 377 |
+
|
| 378 |
+
with gr.Row():
|
| 379 |
+
edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True,
|
| 380 |
+
label="CFG Image Scale", info="Controls how much the model preserves input image details")
|
| 381 |
+
edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
| 382 |
+
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
|
| 383 |
+
|
| 384 |
+
with gr.Row():
|
| 385 |
+
edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
|
| 386 |
+
value="text_channel", label="CFG Renorm Type",
|
| 387 |
+
info="If the genrated image is blurry, use 'global")
|
| 388 |
+
edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
| 389 |
+
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
|
| 390 |
+
|
| 391 |
+
with gr.Row():
|
| 392 |
+
edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
|
| 393 |
+
label="Timesteps", info="Total denoising steps")
|
| 394 |
+
edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True,
|
| 395 |
+
label="Timestep Shift", info="Higher values for layout, lower for details")
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
# Thinking parameters in a single row
|
| 399 |
+
edit_thinking_params = gr.Group(visible=False)
|
| 400 |
+
with edit_thinking_params:
|
| 401 |
+
with gr.Row():
|
| 402 |
+
edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
| 403 |
+
edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
|
| 404 |
+
label="Max Think Tokens", info="Maximum number of tokens for thinking")
|
| 405 |
+
edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
|
| 406 |
+
label="Temperature", info="Controls randomness in text generation")
|
| 407 |
+
|
| 408 |
+
edit_btn = gr.Button("Submit")
|
| 409 |
+
|
| 410 |
+
# Dynamically show/hide thinking process box for editing
|
| 411 |
+
def update_edit_thinking_visibility(show):
|
| 412 |
+
return gr.update(visible=show), gr.update(visible=show)
|
| 413 |
+
|
| 414 |
+
edit_show_thinking.change(
|
| 415 |
+
fn=update_edit_thinking_visibility,
|
| 416 |
+
inputs=[edit_show_thinking],
|
| 417 |
+
outputs=[edit_thinking_output, edit_thinking_params]
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
edit_btn.click(
|
| 421 |
+
fn=edit_image,
|
| 422 |
+
inputs=[
|
| 423 |
+
edit_image_input, edit_prompt, edit_show_thinking,
|
| 424 |
+
edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
|
| 425 |
+
edit_timestep_shift, edit_num_timesteps,
|
| 426 |
+
edit_cfg_renorm_min, edit_cfg_renorm_type,
|
| 427 |
+
edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed
|
| 428 |
+
],
|
| 429 |
+
outputs=[edit_image_output, edit_thinking_output]
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
with gr.Tab("🖼️ Image Understanding"):
|
| 433 |
+
with gr.Row():
|
| 434 |
+
with gr.Column(scale=1):
|
| 435 |
+
img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg'))
|
| 436 |
+
understand_prompt = gr.Textbox(
|
| 437 |
+
label="Prompt",
|
| 438 |
+
value="Can someone explain what's funny about this meme??"
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
with gr.Column(scale=1):
|
| 442 |
+
txt_output = gr.Textbox(label="Result", lines=20)
|
| 443 |
+
|
| 444 |
+
with gr.Row():
|
| 445 |
+
understand_show_thinking = gr.Checkbox(label="Thinking", value=False)
|
| 446 |
+
|
| 447 |
+
# Add hyperparameter controls in an accordion
|
| 448 |
+
with gr.Accordion("Inference Hyperparameters", open=False):
|
| 449 |
+
with gr.Row():
|
| 450 |
+
understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
| 451 |
+
understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True,
|
| 452 |
+
label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)")
|
| 453 |
+
understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True,
|
| 454 |
+
label="Max New Tokens", info="Maximum length of generated text, including potential thinking")
|
| 455 |
+
|
| 456 |
+
img_understand_btn = gr.Button("Submit")
|
| 457 |
+
|
| 458 |
+
img_understand_btn.click(
|
| 459 |
+
fn=image_understanding,
|
| 460 |
+
inputs=[
|
| 461 |
+
img_input, understand_prompt, understand_show_thinking,
|
| 462 |
+
understand_do_sample, understand_text_temperature, understand_max_new_tokens
|
| 463 |
+
],
|
| 464 |
+
outputs=txt_output
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
gr.Markdown("""
|
| 468 |
+
<div style="display: flex; justify-content: flex-start; flex-wrap: wrap; gap: 10px;">
|
| 469 |
+
<a href="https://bagel-ai.org/">
|
| 470 |
+
<img
|
| 471 |
+
src="https://img.shields.io/badge/BAGEL-Website-0A66C2?logo=safari&logoColor=white"
|
| 472 |
+
alt="BAGEL Website"
|
| 473 |
+
/>
|
| 474 |
+
</a>
|
| 475 |
+
<a href="https://arxiv.org/abs/2505.14683">
|
| 476 |
+
<img
|
| 477 |
+
src="https://img.shields.io/badge/BAGEL-Paper-red?logo=arxiv&logoColor=red"
|
| 478 |
+
alt="BAGEL Paper on arXiv"
|
| 479 |
+
/>
|
| 480 |
+
</a>
|
| 481 |
+
<a href="https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT">
|
| 482 |
+
<img
|
| 483 |
+
src="https://img.shields.io/badge/BAGEL-Hugging%20Face-orange?logo=huggingface&logoColor=yellow"
|
| 484 |
+
alt="BAGEL on Hugging Face"
|
| 485 |
+
/>
|
| 486 |
+
</a>
|
| 487 |
+
<a href="https://demo.bagel-ai.org/">
|
| 488 |
+
<img
|
| 489 |
+
src="https://img.shields.io/badge/BAGEL-Demo-blue?logo=googleplay&logoColor=blue"
|
| 490 |
+
alt="BAGEL Demo"
|
| 491 |
+
/>
|
| 492 |
+
</a>
|
| 493 |
+
<a href="https://discord.gg/Z836xxzy">
|
| 494 |
+
<img
|
| 495 |
+
src="https://img.shields.io/badge/BAGEL-Discord-5865F2?logo=discord&logoColor=purple"
|
| 496 |
+
alt="BAGEL Discord"
|
| 497 |
+
/>
|
| 498 |
+
</a>
|
| 499 |
+
<a href="mailto:[email protected]">
|
| 500 |
+
<img
|
| 501 |
+
src="https://img.shields.io/badge/BAGEL-Email-D14836?logo=gmail&logoColor=red"
|
| 502 |
+
alt="BAGEL Email"
|
| 503 |
+
/>
|
| 504 |
+
</a>
|
| 505 |
+
</div>
|
| 506 |
+
""")
|
| 507 |
+
|
| 508 |
demo.launch()
|