Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,7 +17,7 @@ model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
|
|
| 17 |
|
| 18 |
processor = LlavaProcessor.from_pretrained(model_id)
|
| 19 |
|
| 20 |
-
model = LlavaForConditionalGeneration.from_pretrained(model_id
|
| 21 |
model.to("cpu")
|
| 22 |
|
| 23 |
|
|
@@ -82,7 +82,6 @@ client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
|
| 82 |
# Define the main chat function
|
| 83 |
def respond(message, history):
|
| 84 |
func_caller = []
|
| 85 |
-
vqa = ""
|
| 86 |
|
| 87 |
user_prompt = message
|
| 88 |
# Handle image processing
|
|
@@ -107,7 +106,7 @@ def respond(message, history):
|
|
| 107 |
]
|
| 108 |
|
| 109 |
message_text = message["text"]
|
| 110 |
-
func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}
|
| 111 |
|
| 112 |
response = client_gemma.chat_completion(func_caller, max_tokens=150)
|
| 113 |
response = str(response)
|
|
@@ -134,7 +133,7 @@ def respond(message, history):
|
|
| 134 |
for msg in history:
|
| 135 |
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
|
| 136 |
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
|
| 137 |
-
messages+=f"\n<|im_start|>user\n{message_text}
|
| 138 |
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
| 139 |
output = ""
|
| 140 |
for response in stream:
|
|
@@ -146,7 +145,7 @@ def respond(message, history):
|
|
| 146 |
gr.Info("Generating Image, Please wait 10 sec...")
|
| 147 |
seed = random.randint(1, 99999)
|
| 148 |
query = query.replace(" ", "%20")
|
| 149 |
-
image = f""
|
| 150 |
yield image
|
| 151 |
time.sleep(8)
|
| 152 |
gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
|
|
@@ -167,7 +166,7 @@ def respond(message, history):
|
|
| 167 |
for msg in history:
|
| 168 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
| 169 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
| 170 |
-
messages+=f"\n<|start_header_id|>user\n{message_text}
|
| 171 |
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
| 172 |
output = ""
|
| 173 |
for response in stream:
|
|
@@ -179,7 +178,7 @@ def respond(message, history):
|
|
| 179 |
for msg in history:
|
| 180 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
| 181 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
| 182 |
-
messages+=f"\n<|start_header_id|>user\n{message_text}
|
| 183 |
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
| 184 |
output = ""
|
| 185 |
for response in stream:
|
|
|
|
| 17 |
|
| 18 |
processor = LlavaProcessor.from_pretrained(model_id)
|
| 19 |
|
| 20 |
+
model = LlavaForConditionalGeneration.from_pretrained(model_id)
|
| 21 |
model.to("cpu")
|
| 22 |
|
| 23 |
|
|
|
|
| 82 |
# Define the main chat function
|
| 83 |
def respond(message, history):
|
| 84 |
func_caller = []
|
|
|
|
| 85 |
|
| 86 |
user_prompt = message
|
| 87 |
# Handle image processing
|
|
|
|
| 106 |
]
|
| 107 |
|
| 108 |
message_text = message["text"]
|
| 109 |
+
func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
|
| 110 |
|
| 111 |
response = client_gemma.chat_completion(func_caller, max_tokens=150)
|
| 112 |
response = str(response)
|
|
|
|
| 133 |
for msg in history:
|
| 134 |
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
|
| 135 |
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
|
| 136 |
+
messages+=f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
|
| 137 |
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
| 138 |
output = ""
|
| 139 |
for response in stream:
|
|
|
|
| 145 |
gr.Info("Generating Image, Please wait 10 sec...")
|
| 146 |
seed = random.randint(1, 99999)
|
| 147 |
query = query.replace(" ", "%20")
|
| 148 |
+
image = f""
|
| 149 |
yield image
|
| 150 |
time.sleep(8)
|
| 151 |
gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
|
|
|
|
| 166 |
for msg in history:
|
| 167 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
| 168 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
| 169 |
+
messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
|
| 170 |
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
| 171 |
output = ""
|
| 172 |
for response in stream:
|
|
|
|
| 178 |
for msg in history:
|
| 179 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
| 180 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
| 181 |
+
messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
|
| 182 |
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
| 183 |
output = ""
|
| 184 |
for response in stream:
|