Spaces:
Paused
Paused
| import gradio as gr | |
| import edge_tts | |
| import asyncio | |
| import tempfile | |
| import numpy as np | |
| import soxr | |
| from pydub import AudioSegment | |
| import torch | |
| import sentencepiece as spm | |
| import onnxruntime as ort | |
| from huggingface_hub import hf_hub_download, InferenceClient | |
| # Speech Recognition Model Configuration | |
| model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25" | |
| sample_rate = 16000 | |
| # Download preprocessor, encoder and tokenizer | |
| preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx")) | |
| encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx")) | |
| tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx")) | |
| # Mistral Model Configuration | |
| client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") | |
| system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" | |
| def resample(audio_fp32, sr): | |
| return soxr.resample(audio_fp32, sr, sample_rate) | |
| def to_float32(audio_buffer): | |
| return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) | |
| def transcribe(audio_path): | |
| audio_file = AudioSegment.from_file(audio_path) | |
| sr = audio_file.frame_rate | |
| audio_buffer = np.array(audio_file.get_array_of_samples()) | |
| audio_fp32 = to_float32(audio_buffer) | |
| audio_16k = resample(audio_fp32, sr) | |
| input_signal = torch.tensor(audio_16k).unsqueeze(0) | |
| length = torch.tensor(len(audio_16k)).unsqueeze(0) | |
| processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length) | |
| logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0] | |
| blank_id = tokenizer.vocab_size() | |
| decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id] | |
| text = tokenizer.decode_ids(decoded_prediction) | |
| return text | |
| def model(text): | |
| formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" | |
| stream = client1.text_generation(formatted_prompt, max_new_tokens=300) | |
| return stream[:-4] | |
| async def respond(audio): | |
| user = transcribe(audio) | |
| reply = model(user) | |
| communicate = edge_tts.Communicate(reply) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
| tmp_path = tmp_file.name | |
| await communicate.save(tmp_path) | |
| return tmp_path |