Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,36 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
-
import json
|
5 |
-
from omegaconf import OmegaConf
|
6 |
import sys
|
7 |
import os
|
8 |
from PIL import Image
|
9 |
import torchvision.transforms as transforms
|
|
|
10 |
|
11 |
photos_folder = "Photos"
|
12 |
|
13 |
-
# Download model
|
14 |
repo_id = "Kiwinicki/sat2map-generator"
|
15 |
-
|
16 |
-
|
17 |
-
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
|
18 |
|
19 |
# Add path to model
|
20 |
-
sys.path.append(os.path.dirname(
|
21 |
-
from model import Generator
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
# Initialize model
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
generator = Generator(cfg).to(device)
|
31 |
-
|
|
|
32 |
generator.eval()
|
33 |
|
34 |
# Transformations
|
@@ -86,12 +88,11 @@ def app():
|
|
86 |
gallery = gr.Gallery(
|
87 |
label="Image Gallery",
|
88 |
value=gallery_images,
|
89 |
-
columns=3,
|
90 |
rows=2,
|
91 |
height="auto"
|
92 |
)
|
93 |
|
94 |
-
|
95 |
with gr.Column():
|
96 |
output_image = gr.Image(label="Result Image", type="pil")
|
97 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
4 |
import sys
|
5 |
import os
|
6 |
from PIL import Image
|
7 |
import torchvision.transforms as transforms
|
8 |
+
from safetensors.torch import load_file
|
9 |
|
10 |
photos_folder = "Photos"
|
11 |
|
12 |
+
# Download model files
|
13 |
repo_id = "Kiwinicki/sat2map-generator"
|
14 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="generator.safetensors")
|
15 |
+
generator_code_path = hf_hub_download(repo_id=repo_id, filename="model.py")
|
|
|
16 |
|
17 |
# Add path to model
|
18 |
+
sys.path.append(os.path.dirname(generator_code_path))
|
19 |
+
from model import Generator, GeneratorConfig
|
20 |
|
21 |
+
# Initialize configuration
|
22 |
+
cfg = GeneratorConfig(
|
23 |
+
channels=3,
|
24 |
+
num_features=64,
|
25 |
+
num_residuals=12,
|
26 |
+
depth=4
|
27 |
+
)
|
28 |
|
29 |
# Initialize model
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
generator = Generator(cfg).to(device)
|
32 |
+
state_dict = load_file(model_path)
|
33 |
+
generator.load_state_dict(state_dict)
|
34 |
generator.eval()
|
35 |
|
36 |
# Transformations
|
|
|
88 |
gallery = gr.Gallery(
|
89 |
label="Image Gallery",
|
90 |
value=gallery_images,
|
91 |
+
columns=3,
|
92 |
rows=2,
|
93 |
height="auto"
|
94 |
)
|
95 |
|
|
|
96 |
with gr.Column():
|
97 |
output_image = gr.Image(label="Result Image", type="pil")
|
98 |
|