Spaces:
Running
Running
working version on pth weights
Browse files- app.py +8 -16
- requirements.txt +1 -2
app.py
CHANGED
@@ -5,32 +5,24 @@ import sys
|
|
5 |
import os
|
6 |
from PIL import Image
|
7 |
import torchvision.transforms as transforms
|
8 |
-
|
9 |
|
10 |
photos_folder = "Photos"
|
11 |
|
12 |
-
# Download model
|
13 |
repo_id = "Kiwinicki/sat2map-generator"
|
14 |
-
|
15 |
-
|
16 |
|
17 |
# Add path to model
|
18 |
-
sys.path.append(os.path.dirname(
|
19 |
from model import Generator, GeneratorConfig
|
20 |
|
21 |
-
# Initialize configuration
|
22 |
-
cfg = GeneratorConfig(
|
23 |
-
channels=3,
|
24 |
-
num_features=64,
|
25 |
-
num_residuals=12,
|
26 |
-
depth=4
|
27 |
-
)
|
28 |
-
|
29 |
# Initialize model
|
|
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
generator = Generator(cfg).to(device)
|
32 |
-
|
33 |
-
generator.load_state_dict(state_dict)
|
34 |
generator.eval()
|
35 |
|
36 |
# Transformations
|
@@ -40,6 +32,7 @@ transform = transforms.Compose([
|
|
40 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
41 |
])
|
42 |
|
|
|
43 |
def process_image(image):
|
44 |
if image is None:
|
45 |
return None
|
@@ -55,7 +48,6 @@ def process_image(image):
|
|
55 |
output_image = output_tensor.squeeze(0).cpu()
|
56 |
output_image = output_image * 0.5 + 0.5 # Denormalization
|
57 |
output_image = transforms.ToPILImage()(output_image)
|
58 |
-
|
59 |
return output_image
|
60 |
|
61 |
def load_images_from_folder(folder):
|
|
|
5 |
import os
|
6 |
from PIL import Image
|
7 |
import torchvision.transforms as transforms
|
8 |
+
|
9 |
|
10 |
photos_folder = "Photos"
|
11 |
|
12 |
+
# Download model and config
|
13 |
repo_id = "Kiwinicki/sat2map-generator"
|
14 |
+
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
|
15 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
|
16 |
|
17 |
# Add path to model
|
18 |
+
sys.path.append(os.path.dirname(model_path))
|
19 |
from model import Generator, GeneratorConfig
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Initialize model
|
22 |
+
cfg = GeneratorConfig()
|
23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
generator = Generator(cfg).to(device)
|
25 |
+
generator.load_state_dict(torch.load(generator_path))
|
|
|
26 |
generator.eval()
|
27 |
|
28 |
# Transformations
|
|
|
32 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
33 |
])
|
34 |
|
35 |
+
|
36 |
def process_image(image):
|
37 |
if image is None:
|
38 |
return None
|
|
|
48 |
output_image = output_tensor.squeeze(0).cpu()
|
49 |
output_image = output_image * 0.5 + 0.5 # Denormalization
|
50 |
output_image = transforms.ToPILImage()(output_image)
|
|
|
51 |
return output_image
|
52 |
|
53 |
def load_images_from_folder(folder):
|
requirements.txt
CHANGED
@@ -3,5 +3,4 @@ torch>=2.0.0
|
|
3 |
torchvision>=0.15.0
|
4 |
gradio
|
5 |
pillow
|
6 |
-
pydantic==2.10.6
|
7 |
-
safetensors
|
|
|
3 |
torchvision>=0.15.0
|
4 |
gradio
|
5 |
pillow
|
6 |
+
pydantic==2.10.6
|
|