model integration
Browse files- app.py +2 -1
- metadata_transformer.py +28 -0
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
def greet(name):
|
4 |
return "Hello " + name + "!!"
|
@@ -30,7 +31,7 @@ output = create_output_component()
|
|
30 |
|
31 |
# Define the Gradio interface.
|
32 |
interface = gr.Interface(
|
33 |
-
fn=
|
34 |
inputs=inputs,
|
35 |
outputs="text",
|
36 |
# live=True,
|
|
|
1 |
import gradio as gr
|
2 |
+
import metadata_transformer
|
3 |
|
4 |
def greet(name):
|
5 |
return "Hello " + name + "!!"
|
|
|
31 |
|
32 |
# Define the Gradio interface.
|
33 |
interface = gr.Interface(
|
34 |
+
fn=metadata_transformer.translate, # This function will handle the logic and transformations.
|
35 |
inputs=inputs,
|
36 |
outputs="text",
|
37 |
# live=True,
|
metadata_transformer.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
model = "meta-llama/Llama-2-7b-chat-hf"
|
7 |
+
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
10 |
+
pipeline = transformers.pipeline(
|
11 |
+
"text-generation",
|
12 |
+
model=model,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
device_map="auto",
|
15 |
+
)
|
16 |
+
|
17 |
+
def translate(schema_input, schema_target, pipeline):
|
18 |
+
sequences = pipeline(
|
19 |
+
'{} \n Translate the schema metadata file above to the schema: {}'.format(schema_input, schema_target),
|
20 |
+
do_sample=True,
|
21 |
+
top_k=10,
|
22 |
+
num_return_sequences=1,
|
23 |
+
eos_token_id=tokenizer.eos_token_id,
|
24 |
+
max_length=200,
|
25 |
+
)
|
26 |
+
return sequences[0]['generated_text']
|
27 |
+
|
28 |
+
|