Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,83 +1,11 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
-
from gradio_rangeslider import RangeSlider
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
# Main Leaderboard containing everything
|
| 9 |
-
text_leaderboard = pd.read_csv(os.path.join('assets', 'merged_data.csv'))
|
| 10 |
-
text_leaderboard = text_leaderboard.sort_values(by='Clemscore', ascending=False)
|
| 11 |
-
|
| 12 |
-
open_weight_df = text_leaderboard[text_leaderboard['Open Weight'] == True]
|
| 13 |
-
if not open_weight_df.empty: # Check if filtered df is non-empty
|
| 14 |
-
max_parameter_size = open_weight_df['Parameters (B)'].max()
|
| 15 |
-
|
| 16 |
-
# Short leaderboard containing fixed columns
|
| 17 |
-
short_leaderboard = filter_cols(text_leaderboard)
|
| 18 |
-
|
| 19 |
-
## Extract data
|
| 20 |
-
langs = []
|
| 21 |
-
licenses = []
|
| 22 |
-
ip_prices = []
|
| 23 |
-
op_prices = []
|
| 24 |
-
latencies = []
|
| 25 |
-
parameters = []
|
| 26 |
-
contexts = []
|
| 27 |
-
dates = []
|
| 28 |
-
|
| 29 |
-
for i in range(len(text_leaderboard)):
|
| 30 |
-
lang_splits = text_leaderboard.iloc[i]['Languages'].split(',')
|
| 31 |
-
lang_splits = [s.strip() for s in lang_splits]
|
| 32 |
-
langs += lang_splits
|
| 33 |
-
license_name = text_leaderboard.iloc[i]['License Name']
|
| 34 |
-
|
| 35 |
-
licenses.append(license_name)
|
| 36 |
-
ip_prices.append(text_leaderboard.iloc[i]['Input $/1M tokens'])
|
| 37 |
-
op_prices.append(text_leaderboard.iloc[i]['Output $/1M tokens'])
|
| 38 |
-
latencies.append(text_leaderboard.iloc[i]['Latency (s)'])
|
| 39 |
-
parameters.append(text_leaderboard.iloc[i]['Parameters (B)'])
|
| 40 |
-
contexts.append(text_leaderboard.iloc[i]['Context Size (k)'])
|
| 41 |
-
dates.append(text_leaderboard.iloc[i]['Release Date'])
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
langs = list(set(langs))
|
| 45 |
-
langs.sort()
|
| 46 |
-
|
| 47 |
-
licenses = list(set(licenses))
|
| 48 |
-
licenses.sort()
|
| 49 |
-
|
| 50 |
-
max_input_price = max(ip_prices)
|
| 51 |
-
max_output_price = max(op_prices)
|
| 52 |
-
max_latency = max(latencies)
|
| 53 |
-
|
| 54 |
-
min_parameters = 0 if pd.isna(min(parameters)) else min(parameters)
|
| 55 |
-
max_parameter = max_parameter_size
|
| 56 |
-
parameter_step = 1
|
| 57 |
-
print(f"MIN {min_parameters}, MAX {max_parameter}")
|
| 58 |
-
|
| 59 |
-
min_context = min(contexts)
|
| 60 |
-
max_context = max(contexts)
|
| 61 |
-
context_step = 8
|
| 62 |
-
|
| 63 |
-
min_date = min(dates)
|
| 64 |
-
max_date = max(dates)
|
| 65 |
-
|
| 66 |
-
TITLE = """<h1 align="center" id="space-title"> LLM Calculator ⚖️⚡ 📏💰</h1>"""
|
| 67 |
-
CSS = """
|
| 68 |
-
#double-slider-1 {height: 100px}
|
| 69 |
-
#double-slider-2 {height: 100px}
|
| 70 |
-
#double-slider-3 {height: 100px}
|
| 71 |
-
#double-slider-4 {height: 100px}
|
| 72 |
-
"""
|
| 73 |
-
|
| 74 |
-
llm_calc_app = gr.Blocks(css=CSS)
|
| 75 |
with llm_calc_app:
|
| 76 |
|
| 77 |
-
gr.HTML(TITLE)
|
| 78 |
-
|
| 79 |
##################################################
|
| 80 |
-
|
| 81 |
with gr.Row():
|
| 82 |
|
| 83 |
#####################################
|
|
@@ -86,14 +14,6 @@ with llm_calc_app:
|
|
| 86 |
## Language Select
|
| 87 |
with gr.Column():
|
| 88 |
|
| 89 |
-
with gr.Row():
|
| 90 |
-
lang_dropdown = gr.Dropdown(
|
| 91 |
-
choices=langs,
|
| 92 |
-
value=[],
|
| 93 |
-
multiselect=True,
|
| 94 |
-
label="Select Languages 🗣️"
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
with gr.Row():
|
| 98 |
start_date = gr.DateTime(
|
| 99 |
)
|
|
@@ -106,37 +26,3 @@ with llm_calc_app:
|
|
| 106 |
llm_calc_app.queue()
|
| 107 |
llm_calc_app.launch()
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
"""
|
| 112 |
-
model_name, input_price, output_price,
|
| 113 |
-
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
|
| 114 |
-
source,licence_name,licence_url,languages,release_date,
|
| 115 |
-
parameters_estimated,parameters_actual,
|
| 116 |
-
|
| 117 |
-
open_weight,context,
|
| 118 |
-
|
| 119 |
-
additional_prices_context_caching,
|
| 120 |
-
additional_prices_context_storage,
|
| 121 |
-
additional_prices_image_input,additional_prices_image_output,additional_prices_video_input,additional_prices_video_output,additional_prices_audio_input,additional_prices_audio_output,clemscore_v1.6.5_multimodal,clemscore_v1.6.5_ascii,clemscore_v1.6,latency_v1.6,latency_v1.6.5_multimodal,latency_v1.6.5_ascii,
|
| 122 |
-
|
| 123 |
-
average_clemscore,average_latency,parameters
|
| 124 |
-
|
| 125 |
-
Final list
|
| 126 |
-
|
| 127 |
-
model_name, input_price, output_price,
|
| 128 |
-
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
|
| 129 |
-
source,licence_name,licence_url,languages,release_date, open_weight,context, average_clemscore,average_latency,parameters
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
Filter
|
| 133 |
-
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
|
| 134 |
-
licence_name+licence_url, languages, release_date, open_weight
|
| 135 |
-
|
| 136 |
-
RR
|
| 137 |
-
model_name, input_price, output_price,
|
| 138 |
-
source, release_date
|
| 139 |
-
|
| 140 |
-
"""
|
| 141 |
-
|
| 142 |
-
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
|
|
|
| 4 |
|
| 5 |
+
llm_calc_app = gr.Blocks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
with llm_calc_app:
|
| 7 |
|
|
|
|
|
|
|
| 8 |
##################################################
|
|
|
|
| 9 |
with gr.Row():
|
| 10 |
|
| 11 |
#####################################
|
|
|
|
| 14 |
## Language Select
|
| 15 |
with gr.Column():
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
with gr.Row():
|
| 18 |
start_date = gr.DateTime(
|
| 19 |
)
|
|
|
|
| 26 |
llm_calc_app.queue()
|
| 27 |
llm_calc_app.launch()
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|