Spaces:
Runtime error
Runtime error
| from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline | |
| from PIL import Image | |
| import gradio as gr | |
| import random | |
| import torch | |
| import math | |
| css = """ | |
| .btn-green { | |
| background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; | |
| border-color: #22c55e !important; | |
| color: #166534 !important; | |
| } | |
| .btn-green:hover { | |
| background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; | |
| } | |
| """ | |
| def generate(prompt, samp_steps, seed, progress=gr.Progress(track_tqdm=True)): | |
| if seed < 0: | |
| seed = random.randint(1,999999) | |
| image = txt2img( | |
| prompt, | |
| num_inference_steps=1, | |
| guidance_scale=0.0, | |
| generator=torch.manual_seed(seed), | |
| ).images[0] | |
| upscaled_image = image.resize((1024,1024), 1) | |
| final_image = img2img( | |
| prompt, | |
| upscaled_image, | |
| num_inference_steps=math.ceil(samp_steps/strength), | |
| guidance_scale=5, | |
| strength=1, | |
| generator=torch.manual_seed(seed), | |
| ).images[0] | |
| return [final_image], seed | |
| def set_base_models(): | |
| txt2img = AutoPipelineForText2Image.from_pretrained( | |
| "stabilityai/sdxl-turbo", | |
| torch_dtype = torch.float16, | |
| variant = "fp16" | |
| ) | |
| txt2img.to("cuda") | |
| img2img = StableDiffusionImg2ImgPipeline.from_pretrained( | |
| "Lykon/dreamshaper-8", | |
| torch_dtype = torch.float16, | |
| variant = "fp16", | |
| safety_checker=None | |
| ) | |
| img2img.to("cuda") | |
| return txt2img, img2img | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt") | |
| submit_btn = gr.Button("Generate", elem_classes="btn-green") | |
| with gr.Row(): | |
| sampling_steps = gr.Slider(1, 6, value=3, step=1, label="Refiner steps") | |
| seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0) | |
| lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False) | |
| gallery = gr.Gallery(show_label=False, preview=True, container=False, height=1100) | |
| submit_btn.click(generate, [prompt, sampling_steps, seed], [gallery, lastSeed], queue=True) | |
| txt2img, img2img = set_base_models() | |
| demo.launch(debug=True) |