auto-grader / app.py
Kuaaangwen's picture
Update app.py
59e519b
raw
history blame
1.85 kB
''' To-do
Create a side bar to compare two or upload CSV
In the second tab, allow them to compare all CSV files
'''
import streamlit as st
import pandas as pd
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
model = SentenceTransformer('paraphrase-xlm-r-multilingual-v1')
sentences = []
# Streamlit interface
st.title("Sentence Similarity")
sidebar_selectbox = st.sidebar.selectbox(
"What would you like to work with?",
("Compare two sentences", "Bulk upload and mark")
)
# Streamlit form elements (default to "Compare two sentences")
if sidebar_selectbox == "Compare two sentences":
st.subheader("Compare the similarity between two sentences")
with st.form("submission_form", clear_on_submit=False):
sentence_1 = st.text_input("Sentence 1 input")
sentence_2 = st.text_input("Sentence 2 input")
submit_button_compare = st.form_submit_button("Compare Sentences")
if sidebar_selectbox == "Bulk upload and mark":
st.subheader("Bulk compare similarity of sentences")
# If submit_button_compare clicked
if submit_button_compare:
# Perform calculations
# Append input sentences to 'sentences' list
sentences.append(sentence_1)
sentences.append(sentence_2)
# Create embeddings for both sentences
sentence_embeddings = model.encode(sentences)
cos_sim = cosine_similarity(sentence_embeddings[0].reshape(1, -1), sentence_embeddings[1].reshape(1, -1))[0][0]
cos_sim = round(cos_sim * 100) # Convert to percentage and round-off
st.write('Similarity between {} and {} is {}%'.format(sentence_1,
sentence_2, cos_sim))