Spaces:
Sleeping
Sleeping
File size: 12,443 Bytes
24aa2f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import gradio as gr
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import logging
from pathlib import Path
import tempfile
import time
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SyllabusFormatter:
def __init__(self, model_name="microsoft/Phi-3-mini-4k-instruct"):
self.model_name = model_name
self.tokenizer = None
self.model = None
self.pipe = None
self.processed_count = 0
self.total_count = 0
def setup_model(self):
"""Download and setup the Phi model"""
try:
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True
)
# Load model with 8-bit quantization for efficiency
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
load_in_8bit=True
)
# Create pipeline
self.pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=2048,
temperature=0.1,
do_sample=True,
top_p=0.9,
repetition_penalty=1.1
)
logger.info("Model setup complete!")
return True
except Exception as e:
logger.error(f"Error setting up model: {str(e)}")
return False
def create_formatting_prompt(self, unit_content: str, unit_name: str, subject_name: str = "") -> str:
"""Create a very clear, focused prompt for formatting syllabus content"""
prompt = f"""<|system|>You are a professional academic syllabus formatter. Your ONLY job is to take badly formatted syllabus content and make it beautifully organized and readable.
RULES:
1. PRESERVE every single word, topic, and concept from the original
2. NEVER add explanations, examples, or new content
3. ONLY restructure and format the existing text
4. Use clear headings, bullet points, and logical grouping
5. Separate different topics with proper spacing
6. Make it scannable and easy to read
FORMAT STYLE:
- Use main topic headings with proper capitalization
- Group related subtopics under main topics
- Use bullet points (β’) for lists of concepts
- Use sub-bullets (β¦) for details under main bullets
- Separate major sections with line breaks
- Keep technical terms exactly as written<|end|>
<|user|>Subject: {subject_name}
Unit: {unit_name}
Original content (poorly formatted):
{unit_content}
Task: Reformat this content to be beautifully organized and readable. Do NOT add any new information - only restructure what's already there. Make it professional and easy to scan.<|end|>
<|assistant|>"""
return prompt
def format_unit_content(self, unit_content: str, unit_name: str, subject_name: str = "", progress=None) -> str:
"""Format a single unit's content using the AI model"""
try:
# Create prompt
prompt = self.create_formatting_prompt(unit_content, unit_name, subject_name)
# Generate formatted content
response = self.pipe(prompt)
# Extract formatted content
generated_text = response[0]['generated_text']
assistant_start = generated_text.find("<|assistant|>")
if assistant_start != -1:
formatted_content = generated_text[assistant_start + len("<|assistant|>"):].strip()
else:
formatted_content = generated_text.strip()
# Clean up and validate
formatted_content = self.clean_generated_content(formatted_content)
if not self.validate_formatted_content(unit_content, formatted_content):
return unit_content
return formatted_content
except Exception as e:
logger.error(f"Error formatting content: {str(e)}")
return unit_content
def validate_formatted_content(self, original: str, formatted: str) -> bool:
"""Validate that formatted content preserves all important information"""
# Basic validation
if len(formatted) < len(original) * 0.4:
return False
return True
def clean_generated_content(self, content: str) -> str:
"""Clean up generated content"""
# Remove special tokens
for token in ["<|system|>", "<|user|>", "<|assistant|>"]:
content = content.replace(token, "")
# Clean up extra whitespace
content = "\n".join(line.strip() for line in content.split("\n") if line.strip())
return content
def process_syllabus_file(self, syllabus_data: dict, progress=gr.Progress()) -> dict:
"""Process the entire syllabus file with progress updates"""
try:
# Count total units
total_units = 0
processed = 0
def count_units(data):
count = 0
if isinstance(data, dict):
for value in data.values():
if isinstance(value, dict):
count += count_units(value)
elif isinstance(value, str) and "Unit" in str(value):
count += 1
return count
total_units = count_units(syllabus_data.get("syllabus", {}))
logger.info(f"Total units to process: {total_units}")
# Process each branch
for branch_name, branch_data in syllabus_data.get("syllabus", {}).items():
if not isinstance(branch_data, dict):
continue
# Process each semester
for sem_name, sem_data in branch_data.items():
if not isinstance(sem_data, dict):
continue
# Process each subject
for subject_name, subject_data in sem_data.items():
if not isinstance(subject_data, dict) or "content" not in subject_data:
continue
content = subject_data["content"]
if not isinstance(content, dict):
continue
# Format each unit
for unit_name, unit_content in content.items():
if not unit_name.startswith("Unit") or not isinstance(unit_content, str):
continue
processed += 1
progress(processed / total_units, desc=f"Processing {unit_name} in {subject_name}...")
# Format the unit content
formatted_content = self.format_unit_content(
unit_content,
unit_name,
subject_name
)
# Update the content
syllabus_data["syllabus"][branch_name][sem_name][subject_name]["content"][unit_name] = formatted_content
# Add formatting metadata
if "metadata" not in syllabus_data:
syllabus_data["metadata"] = {}
syllabus_data["metadata"].update({
"lastFormatted": time.strftime("%Y-%m-%dT%H:%M:%SZ"),
"formattingModel": "Phi-3 Mini",
"unitsProcessed": processed,
"version": "1.0"
})
return syllabus_data
except Exception as e:
logger.error(f"Error processing syllabus: {str(e)}")
raise gr.Error(f"Error processing syllabus: {str(e)}")
# Initialize the formatter
formatter = None
def setup_formatter():
global formatter
if formatter is None:
formatter = SyllabusFormatter()
return formatter.setup_model()
return True
def process_file(file):
"""Process the uploaded syllabus file"""
try:
# Setup formatter if needed
if not setup_formatter():
raise gr.Error("Failed to setup the formatting model. Please try again.")
# Read and parse JSON
content = file.read()
syllabus_data = json.loads(content)
# Process syllabus
formatted_data = formatter.process_syllabus_file(syllabus_data)
# Save to temporary file
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as tmp:
json.dump(formatted_data, tmp, indent=2)
return tmp.name
except json.JSONDecodeError:
raise gr.Error("Invalid JSON file. Please check your syllabus file format.")
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
# Custom theme
theme = gr.themes.Soft(
primary_hue="indigo",
secondary_hue="blue",
).set(
body_background_fill="#fafafa",
body_background_fill_dark="#1a1a1a",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600"
)
# Gradio interface
title = "π Syllabus Formatter"
description = """
Transform your syllabus into a beautifully formatted, easy-to-read document using AI.
### Features:
- Preserves all original content
- Improves readability and organization
- Creates logical grouping and sections
- Adds professional formatting
Simply upload your JSON syllabus file and get a formatted version back!
"""
css = """
.feedback {
margin-top: 20px;
padding: 10px;
border-radius: 8px;
background-color: #f0f9ff;
border: 1px solid #bae6fd;
}
.dark .feedback {
background-color: #082f49;
border-color: #075985;
}
"""
with gr.Blocks(theme=theme, css=css) as iface:
gr.Markdown(f"# {title}")
gr.Markdown(description)
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Syllabus JSON",
file_types=[".json"],
file_count="single"
)
process_btn = gr.Button("πͺ Format Syllabus", variant="primary")
output_file = gr.File(
label="Download Formatted Syllabus",
file_count="single",
type="file",
interactive=False
)
with gr.Row():
feedback = gr.Markdown(
value="Upload a JSON syllabus file to begin...",
elem_classes=["feedback"]
)
def update_feedback(file):
return "Processing your syllabus... This may take a few minutes depending on the size."
# Setup click event
process_btn.click(
fn=update_feedback,
inputs=[file_input],
outputs=[feedback],
queue=False
).then(
fn=process_file,
inputs=[file_input],
outputs=[output_file]
).success(
fn=lambda: "β¨ Syllabus formatting complete! You can now download the formatted file.",
outputs=[feedback]
)
gr.Markdown("""
### π Notes:
- The formatter preserves all original content while improving organization
- Processing time depends on the size of your syllabus
- For large files, please be patient as the AI processes each section
Made with β€οΈ using Microsoft's Phi-3 Mini model
""")
# Launch in dev mode
if __name__ == "__main__":
iface.launch()
|