File size: 5,928 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
# Please use this implementation in your products
# This implementation may produce slightly different results from Saining Xie's official implementations,
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
# Different from official vae and other implementations, this is an RGB-input model (rather than BGR)
# and in this way it works better for gradio's RGB protocol
import sys
from pathlib import Path
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent.parent))
from torch import nn
import torch
import numpy as np
from torchvision import transforms as T
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
import json
from PIL import Image
import torchvision.transforms.functional as TF
from accelerate import Accelerator
from diffusers.models import AutoencoderKL
import os

image_resize = 1024


class DoubleConvBlock(nn.Module):
    def __init__(self, input_channel, output_channel, layer_number):
        super().__init__()
        self.convs = torch.nn.Sequential()
        self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
        for i in range(1, layer_number):
            self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
        self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)

    def forward(self, x, down_sampling=False):
        h = x
        if down_sampling:
            h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
        for conv in self.convs:
            h = conv(h)
            h = torch.nn.functional.relu(h)
        return h, self.projection(h)


class ControlNetHED_Apache2(nn.Module):
    def __init__(self):
        super().__init__()
        self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
        self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
        self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
        self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
        self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
        self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)

    def forward(self, x):
        h = x - self.norm
        h, projection1 = self.block1(h)
        h, projection2 = self.block2(h, down_sampling=True)
        h, projection3 = self.block3(h, down_sampling=True)
        h, projection4 = self.block4(h, down_sampling=True)
        h, projection5 = self.block5(h, down_sampling=True)
        return projection1, projection2, projection3, projection4, projection5


class InternData(Dataset):
    def __init__(self):
        ####
        with open('data/InternData/partition/data_info.json', 'r') as f:
            self.j = json.load(f)
        self.transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB')),
            T.Resize(image_resize),  # Image.BICUBIC
            T.CenterCrop(image_resize),
            T.ToTensor(),
        ])

    def __len__(self):
        return len(self.j)

    def getdata(self, idx):

        path = self.j[idx]['path']
        image = Image.open("data/InternImgs/" + path)
        image = self.transform(image)
        return image, path

    def __getitem__(self, idx):
        for i in range(20):
            try:
                data = self.getdata(idx)
                return data
            except Exception as e:
                print(f"Error details: {str(e)}")
                idx = np.random.randint(len(self))
        raise RuntimeError('Too many bad data.')

class HEDdetector(nn.Module):
    def __init__(self, feature=True, vae=None):
        super().__init__()
        self.model = ControlNetHED_Apache2()
        self.model.load_state_dict(torch.load('output/pretrained_models/ControlNetHED.pth', map_location='cpu'))
        self.model.eval()
        self.model.requires_grad_(False)
        if feature:
            if vae is None:
                self.vae = AutoencoderKL.from_pretrained("output/pretrained_models/sd-vae-ft-ema")
            else:
                self.vae = vae
            self.vae.eval()
            self.vae.requires_grad_(False)
        else:
            self.vae = None

    def forward(self, input_image):
        B, C, H, W = input_image.shape
        with torch.inference_mode():
            edges = self.model(input_image * 255.)
            edges = torch.cat([TF.resize(e, [H, W]) for e in edges], dim=1)
            edge = 1 / (1 + torch.exp(-torch.mean(edges, dim=1, keepdim=True)))
            edge.clip_(0, 1)
            if self.vae:
                edge = TF.normalize(edge, [.5], [.5])
                edge = edge.repeat(1, 3, 1, 1)
                posterior = self.vae.encode(edge).latent_dist
                edge = torch.cat([posterior.mean, posterior.std], dim=1).cpu().numpy()
        return edge


def main():
    dataset = InternData()
    dataloader = DataLoader(dataset, batch_size=10, shuffle=False, num_workers=8, pin_memory=True)
    hed = HEDdetector()

    accelerator = Accelerator()
    hed, dataloader = accelerator.prepare(hed, dataloader)


    for img, path in tqdm(dataloader):
        out = hed(img.cuda())
        for p, o in zip(path, out):
            save = f'data/InternalData/hed_feature_{image_resize}/' + p.replace('.png', '.npz')
            if os.path.exists(save):
                continue
            os.makedirs(os.path.dirname(save), exist_ok=True)
            np.savez_compressed(save, o)


if __name__ == "__main__":
    main()