# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import torch import torch.nn as nn import os import numpy as np from timm.models.layers import DropPath from timm.models.vision_transformer import PatchEmbed, Mlp from DiT_VAE.diffusion.model.builder import MODELS from DiT_VAE.diffusion.model.utils import auto_grad_checkpoint, to_2tuple from DiT_VAE.diffusion.model.nets.PixArt_blocks import t2i_modulate, WindowAttention, MultiHeadCrossAttention, \ T2IFinalLayer, TimestepEmbedder, ImageCaptionEmbedder, DinoFeatureEmbedderQFormer from DiT_VAE.diffusion.utils.logger import get_root_logger class PixArtBlock(nn.Module): """ A PixArt block with adaptive layer norm (adaLN-single) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., window_size=0, input_size=None, use_rel_pos=False, **block_kwargs): super().__init__() self.hidden_size = hidden_size self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = WindowAttention(hidden_size, num_heads=num_heads, qkv_bias=True, input_size=input_size if window_size == 0 else (window_size, window_size), use_rel_pos=use_rel_pos, **block_kwargs) self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # to be compatible with lower version pytorch approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.window_size = window_size self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5) def forward(self, x, y, t, mask=None, img_feature=None, **kwargs): B, N, C = x.shape shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1) if img_feature is None: x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C)) else: x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa) img_feature = img_feature.squeeze(1) N_new = N + img_feature.shape[1] x_m = self.attn(torch.cat([x_m, img_feature], dim=1)).reshape(B, N_new, C) x_m = x_m[:,:N, :] x = x + self.drop_path(gate_msa * x_m) x = x + self.cross_attn(x, y, mask) x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) return x ############################################################################# # Core PixArt Model # ################################################################################# @MODELS.register_module() class TriDitCLIPDINO(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__(self, input_size, patch_size=2, in_channels=8, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, pred_sigma=True, drop_path: float = 0., window_size=0, window_block_indexes=None, use_rel_pos=False, caption_channels=1280, lewei_scale=1.0, config=None, dino_channels=768, img_feature_self_attention=False, dino_norm=False, model_max_length=257, **kwargs): if window_block_indexes is None: window_block_indexes = [] super().__init__() self.img_feature_self_attention= img_feature_self_attention self.pred_sigma = pred_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if pred_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.lewei_scale = lewei_scale, assert isinstance(input_size, tuple) self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True) self.t_embedder = TimestepEmbedder(hidden_size) num_patches = self.x_embedder.num_patches self.base_size_h = input_size[0] // self.patch_size self.base_size_w = input_size[1] // self.patch_size self.h = self.base_size_h self.w= self.base_size_w # Will use fixed sin-cos embedding: self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size)) approx_gelu = lambda: nn.GELU(approximate="tanh") self.t_block = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) self.dino_embedder = DinoFeatureEmbedderQFormer(in_channels=dino_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=256) self.y_embedder = ImageCaptionEmbedder(in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=16) drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ PixArtBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], input_size=(input_size[0] // patch_size, input_size[1] // patch_size), window_size=window_size if i in window_block_indexes else 0, use_rel_pos=use_rel_pos if i in window_block_indexes else False) for i in range(depth) ]) self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) self.initialize_weights() if config: logger = get_root_logger(os.path.join(config.work_dir, 'train_log.log')) logger.warning( f"lewei scale: {self.lewei_scale}, base size h: {self.base_size_h} base size w: {self.base_size_w}") else: print( f'Warning: lewei scale: {self.lewei_scale}, base size h: {self.base_size_h} base size w: {self.base_size_w}') def forward(self, x, timestep, y, img_feature, drop_img_mask=None, mask=None, data_info=None, **kwargs): """ Forward pass of PixArt. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) tensor of class labels """ x = x.to(self.dtype) timestep = timestep.to(self.dtype) y = y.to(self.dtype) img_feature = img_feature.to(self.dtype) pos_embed = self.pos_embed.to(self.dtype) self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(timestep.to(x.dtype)) # (N, D) t0 = self.t_block(t) y = self.y_embedder(y, self.training) # (N, 1, L, D) img_embedding = self.dino_embedder(img_feature, self.training) # y_fusion = y if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) for block in self.blocks: x = auto_grad_checkpoint(block, x, y, t0, y_lens, img_embedding) # (N, T, D) #support grad checkpoint x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return x def forward_with_dpmsolver(self, x, timestep, y, img_feature, mask=None, **kwargs): """ dpm solver donnot need variance prediction """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb model_out = self.forward(x, timestep, y, img_feature) return model_out.chunk(2, dim=1)[0] def forward_with_cfg(self, x, timestep, y, img_feature, cfg_scale, mask=None, **kwargs): """ Forward pass of PixArt, but also batches the unconditional forward pass for classifier-free guidance. """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb half = x[: len(x) // 2] combined = torch.cat([half, half], dim=0) model_out = self.forward(combined, timestep, y, img_feature, kwargs) model_out = model_out['x'] if isinstance(model_out, dict) else model_out eps, rest = torch.split(model_out, self.in_channels, dim=1) # eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] h = int(x.shape[1] ** 0.5 * 2) w = int(x.shape[1] ** 0.5 / 2) assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) return x.reshape(shape=(x.shape[0], c, h * p, w * p)) def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize (and freeze) pos_embed by sin-cos embedding: pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5), lewei_scale=self.lewei_scale, base_size_h=self.base_size_h, base_size_w=self.base_size_w) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) nn.init.normal_(self.t_block[1].weight, std=0.02) # Initialize caption embedding MLP: nn.init.normal_(self.y_embedder.proj_out.fc1.weight, std=0.02) nn.init.normal_(self.y_embedder.proj_out.fc2.weight, std=0.02) nn.init.normal_(self.y_embedder.proj_in.weight, std=0.02) # Initialize dino embedding MLP: # nn.init.normal_(self.dino_embedder.y_proj.fc1.weight, std=0.02) # nn.init.normal_(self.dino_embedder.y_proj.fc2.weight, std=0.02) nn.init.normal_(self.dino_embedder.proj_out.fc1.weight, std=0.02) nn.init.normal_(self.dino_embedder.proj_out.fc2.weight, std=0.02) nn.init.normal_(self.dino_embedder.proj_in.weight, std=0.02) # if not self.img_feature_self_attention: # # Initialize fusion embedding MLP: # nn.init.normal_(self.fusion_embedder.y_proj.fc1.weight, std=0.02) # nn.init.normal_(self.fusion_embedder.y_proj.fc2.weight, std=0.02) # Zero-out adaLN modulation layers in PixArt blocks: for block in self.blocks: nn.init.constant_(block.cross_attn.proj.weight, 0) nn.init.constant_(block.cross_attn.proj.bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) @property def dtype(self): return next(self.parameters()).dtype def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, lewei_scale=1.0, base_size_h=16, base_size_w=16): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ if isinstance(grid_size, int): grid_size = to_2tuple(grid_size) grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size_h) / lewei_scale grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size_w) / lewei_scale grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) return np.concatenate([emb_h, emb_w], axis=1) def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2. omega = 1. / 10000 ** omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) return np.concatenate([emb_sin, emb_cos], axis=1) ################################################################################# # PixArt Configs # ################################################################################# @MODELS.register_module() def TriDitCLIPDINO_XL_2(**kwargs): return TriDitCLIPDINO(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)